
Novel Frameworks for Auctions and Optimization

by

Zeyuan Allen-Zhu

B.S. in Mathematics and Physics, Tsinghua University (2010)
S.M. in Electrical Engineering and Computer Science, MIT (2012)

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Doctor of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

c© Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 17, 2015

Certified by. .
Jonathan A. Kelner

Associate Professor of Applied Mathematics
Thesis Supervisor

Certified by. .
Silvio Micali

Ford Professor of Engineering
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Theses

2

Novel Frameworks for Auctions and Optimization

by

Zeyuan Allen-Zhu

Submitted to the Department of Electrical Engineering and Computer Science
on August 17, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Science

Abstract

This thesis contains two parts.
Part I introduces novel frameworks for modeling uncertainty in auctions. This

enables us to provide robust analysis to alternative specifications of preferences and
information structures in Vickrey and VCG auctions.

Part II introduces novel frameworks for understanding first-order methods in op-
timization. This enables us to (1) break 20-year barriers on the running time used
for solving positive linear programs, (2) reduce the complexity for solving positive
semidefinite programs, and (3) strengthen the theory of matrix multiplicative weight
updates and improve the theory of linear-sized spectral sparsification.

Thesis Supervisor: Jonathan A. Kelner
Title: Associate Professor of Applied Mathematics

Thesis Supervisor: Silvio Micali
Title: Ford Professor of Engineering

3

4

To my mum, Xiaoli Xu

5

6

Acknowledgments

暮色苍茫看劲松，乱云飞渡仍从容。天生一个仙人洞，无限风光在险峰。

— Zedong Mao

I would like to thank Professor Silvio Micali for his careful and close supervision

in the past five academic years. Not only his inspiring and idiosyncratic talk in

mechanism design inspired me to enter the field of game theory, it was also his very

first choice that brings me to the theory family of MIT CSAIL. I cannot appreciate

more on this. It was also my extreme fortune to be supervised by Professor Jonathan

Kelner who nurtured me, supported me, and inspired me with his knowledgeable

experiences and insightful comments to nearly all the research areas surrounding

computer science. It was such a wonderful experience and a unique memory to be

co-supervised by both Silvio and Jon during my doctoral studies, and there are lots

of things that I can continue to learn from them regarding how they have become

such world-class researchers.

I would like to thank Professors Shafi Goldwasser and Nir Shavit for their special

and precious encouragements during many periods of my graduate program.

I would like to thank Alessandro Chiesa who introduced me all the secrets about

MIT, so that I can integrate into this big family without difficulty.

I would like to thank Lorenzo Orecchia who discussed with me all of the crazy

ideas so that I can bravely start a new research direction when there are only two

years left in my graduate program.

Beyond this thesis, I am fortunate to have collaborated extensively with, in al-

phabetical order, Rati Gelashvili, Silvio Lattanzi, Zhenyu Liao, Vahab Mirrokni, Sasa

Misailovic, Ilya Razenshteyn, Martin Rinard, Nir Shavit, Christian Sommer and Yang

Yuan, and more or less with many others at MIT. I am also grateful for the supports

that I have received beyond research, including that from our instructors, our students

and our secretaries in the CSAIL Theory Group.

Last but not least, I never forget to thank my dearest mother for her unceasing

support and unselfish dedication to my family, my education, throughout the past 27

years. For all of the above, and the unnamed, please allow me to express my deepest

gratitude, now and always.

Financial Acknowledgements. This thesis and my graduate study at MIT are

fully supported by

• 9 months of Greater China Fellowship,

• 3 months Big George Ventures Fund from Ray Sidney,

• 6 months of Simons Award from the Simons Foundation,

• 3 months of Bridge Fund from the MIT EECS department,

• 4.5 months of Teaching Assistantship from Professor David Karger,

7

• 9 months of Research Assistantship from Professor Jonathan Kelner, and

• 25.5 months of Research Assistantship from Professor Silvio Micali.

I would like to sincerely thank all of the supporters above that make my study at

MIT possible. Besides, I would also like to thank the Akamai Foundation and the

Simons Foundation that put together $22,000 travel and equipment money that has

made my collaborations outside MIT more than easy and enjoyable.

Other Acknowledgements. I would like to thank a United Airline operated flight

and the Simons Institute at Berkeley at which places the results of Chapter 8 of this

thesis was obtained.

I would like to thank the MIT office 32-G804 and its owner at the time, Cong Yan,

without its quite location and the owner’s hospitality the main result of Chapter 6 of

this thesis cannot be produced.

Part I of this thesis, namely, Chapters 1, 2 and 3 were obtained at my MIT CSAIL

office 32-G636 with the presence of my lovely officemates. The rest of Part II, namely,

Chapters 4, 5 and 7 were obtained at my MIT Math desk E17-301A as well as a bright

and amazing common study room of the Ashdown House. I would like to thank MIT

that provides awesome research environments like these.

8

Contents

I Novel Frameworks for Auctions 14

1 Knightian Analysis of the Vickrey Mechanism 15

1.1 Introduction . 15

1.2 Model . 18

1.2.1 Notation for Multi-Unit Auctions 18

1.2.2 Knightian Valuation Uncertainty 19

1.3 The First Theorem . 20

1.4 The Second Theorem . 21

1.5 The Third Theorem . 25

1.A Knightian Revelation Principle . 26

1.B Proof of Theorem 1.6 . 27

1.C Proof of Theorem 1.8 . 29

1.D Proof of Corollary 1.10 . 31

1.E Proof of Theorem 1.14 . 32

1.E.1 A Structural Lemma . 32

1.E.2 Deducing Theorem 1.14 from Lemma 1.18 34

1.F The Set of Undominated Strategies is Non-Empty 36

1.G The Work of Lopomo, Rigotti, and Shannon 37

2 Knightian Self Uncertainty in the VCG Mechanism for

Unrestricted Combinatorial Auctions 39

2.1 Introduction . 40

2.1.1 Theorem 2.1: VCG Auction in Undominated Strategies 40

2.1.2 Theorem 2.2: VCG Auctions in Regret-Minimizing Strategies 41

2.1.3 The Meaningfulness of Theorem 2.2 and a Rationality Bridge

Lemma . 42

2.1.4 In Sum . 43

2.1.5 Roadmap . 43

2.2 Related Work . 44

2.3 Classical and Knightian Basic Notions 45

2.4 A Weaker Version of Theorem 2.1 . 47

9

2.5 Proof of Theorem 2.2 . 50

2.A Theorem 2.1: How to Obtain a Stronger Result and a Characterization 55

2.A.1 Geometric Description of V(Ki) 56

2.B Proof of One Side of Theorem 2.1a 59

2.B.1 Case 1 . 61

2.B.2 Case 2 . 64

2.B.3 Case 3 . 67

2.C Proof of Theorem 2.1b . 69

2.C.1 Construction of The Hard Instance 69

2.C.2 Putting Things Together . 72

2.D Theorem 2.2 with Mixed Strategies 74

2.D.1 Why Allowing Mixed Strategies Yields a Different Result . . . 74

2.D.2 Proof of Theorem 2.2′ . 75

3 Bridging Utility Maximization and Regret Minimization 81

3.1 Introduction . 81

3.2 Basic Notions . 82

3.3 Result . 83

3.4 Implications for Mechanism Design 85

3.5 Pure vs. Mixed Strategies . 86

II Novel Frameworks for Optimization 87

4 Linear Coupling: An Ultimate Unification of Gradient and Mirror

Descent 89

4.1 Introduction . 90

4.1.1 Understanding First-Order Methods: Gradient Descent and Mir-

ror Descent . 91

4.1.2 Our Conceptual Question . 94

4.1.3 Accelerated Gradient Method From Linear Coupling 95

4.1.4 Conclusion . 97

4.2 Preliminaries . 97

4.2.1 Review of Primal Descent . 97

4.2.2 Review of Mirror Descent . 98

4.2.3 Remark . 100

4.3 Warm-Up Accelerated Gradient Method with Fixed Step Length . . . 100

4.4 Final Accelerated Gradient Method with Variable Step Lengths . . . 103

4.5 Strong Convexity Version of Accelerated Gradient Method 105

4.A Several Remarks on First-Order Methods 106

4.A.1 Importance of Non-Euclidean Norms 106

10

4.A.2 Multiplicative Weight Updates as Mirror Descent 107

4.A.3 Partial Equivalence Between Mirror Descent and Dual Averaging108

4.A.4 Deducing the Mirror-Descent Guarantee via Gradient Descent 109

4.B Missing Proof of Section 4.2 . 110

4.B.1 Missing Proof for Gradient Descent 110

4.B.2 Missing Proof for Mirror Descent 112

4.C Missing Proofs of Section 4.4 . 112

5 Using Optimization to Solve Positive LPs Faster in Parallel 115

5.1 Introduction . 115

5.1.1 Our Results . 119

5.1.2 Roadmap . 121

5.2 Smoothing the Positive LP Objective 121

5.3 Parallelizable Packing LP Solver . 123

5.3.1 The Gradient Descent Lemma 126

5.3.2 The Mirror Descent Lemma 128

5.3.3 The Coupling Lemma . 130

5.4 Parallelizable Covering LP Solver . 131

5.A Empirical Evaluation . 132

5.A.1 AutoStep: Automatic Step-Length Computation 132

5.A.2 Illustration . 133

5.B Semi-Stateless Feature of our Positive-LP Solver 134

5.C Missing Proof of Proposition 5.2 . 135

5.D Parallelizable Covering LP Solver . 137

5.D.1 Objective Optimality . 137

5.D.2 Approximate Feasibility . 138

6 Nearly-Linear Time Positive LP Solver with Faster Convergence

Rate 143

6.1 Introduction . 143

6.1.1 Our Results . 146

6.1.2 Roadmap . 148

6.2 Relaxation of the Packing Linear Program 148

6.3 Our Packing LP Solver . 152

6.3.1 Step 1: Mirror Descent Guarantee 153

6.3.2 Step 2: Gradient Descent Guarantee 154

6.3.3 Step 3: Putting All Together 155

6.4 Sketching the Main Ideas for Our Covering LP Solver 157

6.5 Relaxation of the Covering Linear Program 158

6.6 Our Covering LP Solver . 159

6.6.1 Step 1: Distance Adjustment 161

11

6.6.2 Step 2: Gradient Truncation 161

6.6.3 Step 3: Mirror Descent Guarantee 162

6.6.4 Step 4: Gradient Descent Guarantee 163

6.6.5 Step 5: Putting All Together 164

6.A Missing Proofs for Section 6.2 . 165

6.B Missing Proofs for Section 6.3 . 167

6.C Missing Proofs for Section 6.5 . 170

6.D Missing Proofs for Section 6.6 . 172

6.E Efficient Implementation of PacLPSolver 179

6.F Efficient Implementation of CovLPSolver 180

7 Using Optimization to Obtain a Width-Independent, Parallel, Sim-

pler, and Faster Positive SDP Solver 185

7.1 Introduction . 186

7.1.1 Roadmap . 190

7.2 Some False and Some True Inequalities in Matrix Algebra 190

7.3 Our Algorithm . 192

7.4 The Convex Objective . 194

7.5 Convergence Analysis for Packing SDP 195

7.5.1 The Gradient Descent Lemma 196

7.6 Convergence Analysis for Covering SDP 198

7.A Missing Proofs for Section 7.2 . 199

7.B Missing Proofs for Section 7.5 . 200

7.B.1 The Gradient Descent Lemma 200

7.B.2 The Coupling Lemma . 201

7.B.3 The Mirror Descent Lemma 202

7.B.4 Proof of Theorem 7.13 . 203

7.C Missing Proofs for Section 7.6 . 204

8 Spectral Sparsification and Regret Minimization Beyond Matrix Mul-

tiplicative Updates 207

8.1 Introduction . 207

8.1.1 Regret Minimization . 209

8.1.2 Extensions . 212

8.2 Preliminaries . 212

8.3 Regret Minimization in Full Information 213

8.4 Warm-Up: Upper-Sided Linear-Sized Sparsification 215

8.5 Linear-Sized Sparsification . 217

8.6 Efficient Implementation for

Graph Sparsification . 219

8.A Partial Equivalence Between FTRL and Mirror Descent 222

12

8.B Graph Notations . 223

8.C Weak Unweighted Sparsifier . 224

8.D Proof of Lemma 8.3 . 226

8.E Missing Proofs in Section 8.3 . 228

8.F Robust Linear-Sized Sparsification . 233

8.F.1 The Problem . 234

8.F.2 Our Algorithm . 234

8.F.3 Our Analysis . 236

8.F.4 An Additional Property . 242

8.G Efficient Implementation for Graph Sparsifications 243

8.G.1 Missing Lemmas . 247

8.H Efficient Implementation for Other Problems 253

13

Part I

Novel Frameworks for Auctions

14

Chapter 1

Knightian Analysis of the Vickrey

Mechanism

This chapter is based on the result published in [44] as well as the online

ArXiv: http: // arxiv. org/ abs/ 1403. 6413 .

We analyze the Vickrey mechanism for auctions of multiple identical goods when

the players have both Knightian uncertainty over their own valuations and incomplete

preferences. In this model, the Vickrey mechanism is no longer dominant-strategy,

and we prove that all dominant-strategy mechanisms are inadequate. However, we

also prove that, in undominated strategies, the social welfare produced by the Vickrey

mechanism in the worst case is not only very good, but also essentially optimal.

1.1 Introduction
We prove that the classical Vickrey mechanism guarantees good social welfare even

when the players have extremely limited knowledge about themselves.

Recall that the Vickrey mechanism efficiently allocates multiple identical goods by

ensuring that it is a dominant strategy for each player i to report his true valuation,

θ∗i . In real life, however, a player i may be uncertain about θ∗i , as it may depend on

variables that are not directly observable by him. A simple way to capture a player

i’s uncertainty about his own valuation is the ‘single-distribution’ model, where i

does not know θ∗i , but only the true distribution from which θ∗i has been drawn. We

instead investigate a more general form of self uncertainty.

Knightian Valuation Uncertainty. In our model, the only information that a

player i has about θ∗i (and more generally about the true valuation profile, θ∗) consists

of a set of distributions, from one of which θ∗i has been drawn. We refer to this model

as Knightian valuation uncertainty or the Knightian valuation model, as it is a special

case of the uncertainty model envisaged by Frank H. Knight almost a century ago [91],

and later formalized by Truman F. Bewley [30].

15

http://arxiv.org/abs/1403.6413

Knightian valuation uncertainty may arise from conflicting expert opinions. Con-

sider a multi-unit auction of a novel good. Unable to evaluate his valuation, a player

i hires multiple (properly incentivized) independent experts to figure it out, trusting

that at least one of them will be right. If each of them reports a different distribution

for θ∗i , either because time was limited or because some of the experts made errors,

then i is ultimately faced with a set of distributions, from one of which θ∗i has been

drawn.

Incomplete Preferences. One may of course assume that players with Knightian

valuation uncertainty have complete preferences, and in particular maxmin prefer-

ences, as defined by Gilboa and Schmeidler [70]. Such preferences are certainly de-

fendable, however, quoting Bewley [30], they “do not lead to the sorts of economic

behavior which make Knightian behavior interesting.”

In our paper, players have incomplete preferences. A player i, only knowing that

his true valuation has been selected from one of multiple distributions, prefers an

outcome ω to another outcome ω′ if and only if his expected utility for ω is higher

than or equal to his expected utility for ω′ with respect to all such distributions (and

strictly greater for at least some of them). As a consequence, some outcomes or some

strategies may be incomparable to him.

Finally, we do not assume that a player with incomparable strategies chooses a

‘reference strategy’. That is, we do not rely on the inertia assumption of Bewley [30].

However, we assume that the players are risk-neutral.

Findings. In the Knightian valuation model, the Vickrey mechanism is no longer

dominant-strategy, but multi-unit dominant-strategy mechanisms still exist: for in-

stance, the ‘degenerate’ mechanism, which assigns all copies the good to a random

player. Our Theorem 1.6 shows that all dominant-strategy mechanisms, as well as

all ex-post Nash mechanisms, whether deterministic or randomized, must essentially

be degenerate. That is, we provide natural conditions under which the allocations

of such mechanisms are unresponsive to each player’s action and thus cannot be ef-

ficient. Importantly, Theorem 1.6 applies also to mechanisms that allow a player to

report a set of valuation distributions rather than a single valuation.

Since dominant-strategy mechanisms cannot achieve even an approximately effi-

cient outcome in our model, it is natural to ask what social-welfare performance can

be guaranteed in undominated strategies. After all, one may be quite confident that

a player will not choose a strategy outside his undominated set.

Our Theorem 1.8 characterizes the set of undominated strategies of a player with

Knightian valuation uncertainty in the Vickrey mechanism. A simple corollary of

this characterization, Corollary 1.10, guarantees that, in undominated strategies, the

social-welfare performance of the Vickrey mechanism is good even in the worst case.

This guarantee, of course, does not exclude that a different mechanism may

perform even better. However, our Theorem 1.14 shows that the worst-case per-

16

formance of the Vickrey mechanism is, de facto, asymptotically optimal among all

undominated-strategy mechanisms, probabilistic or not, no matter what their strat-

egy spaces may be. That is, as the number of players grows, no mechanism assigning

finitely many pure strategies to each player can out-perform the Vickrey one in the

worst case.

In Sum. Our theorems together show that, for risk-neutral players, the classical

Vickrey mechanism is very robust to alternative specifications of preferences and

information structures. Indeed, as most things classical, it outlives the confines in

which it was conceived, and continues to be relevant in new and unforeseen settings.

We believe that such robustness is an important property of a mechanism.

Related Work. Knightian uncertainty has received much attention in decision the-

ory. Aumann [14]; Dubra, Maccheroni and Ok [55]; Ok [124]; and Nascimento [112]

investigate decision with incomplete orders of preferences. Various criteria for select-

ing a single distribution out of a set of distributions have been studied by Danan [49];

Schmeidler [139]; Gilboa and Schmeidler [70]; and Maccheroni, Marinacci and Rus-

tichini [102]. Bose, Ozdenoren and Pape [34] and Bodoh-Creed [33] use the model

from Gilboa and Schmeidler [70] to study auctions. General equilibrium models with

incompletely ordered preferences have been considered by Mas-Colell [105]; Gale and

Mas-Colell [67]; Shafer and Sonnenschein [141]; and Fon and Otani [64]. Rigotti and

Shannon [135] have characterized the set of equilibria in a financial market problem

with incomplete preferences.

Mechanisms with Knightian uncertainty were first considered by Lopomo, Rigotti,

and Shannon [99]. They do not focus on auctions, but on the rental extraction

problem. (See Appendix 1.G for a technical comparison.)

Lopomo, Rigotti, and Shannon also studied variants of the notions they proposed

in [99] for a principal-agent model with Knightian uncertainty [100].

Di Tillio, Kos and Messner [53] and Bose and Renou [35] have studied ambiguous

mechanisms, assuming that the players have maxmin preferences [70]. Informally,

ambiguous mechanisms do not map a profile of strategies to a single outcome, but

to an outcome arbitrarily chosen from a set of outcomes. Thus, in a sense, they

‘exogenously introduce Knightian uncertainty’.

Full implementation in (traditional) undominated strategies was proposed by

Jackson [79, 80]. An example of such implementation in the exact-valuation model

is given by the mechanism of Babaioff et al. [21] for efficiency in multi-good auctions

where each player may be interested in different bundles of the goods, but has the

same value for each such bundle.

17

1.2 Model

1.2.1 Notation for Multi-Unit Auctions

We study auctions of a homogenous good in which players have multi-unit demand.

We denote by n the number of players; by m the number of copies of the good; by

[n] the set {1, 2, . . . , n}; and by [m] the set {1, 2, . . . ,m}. The set of all possible

allocations is A def
=
{
A ∈ Zn≥0

∣∣ ∑n
i=0 Ai = m

}
. In an allocation A ∈ A, A0 is the

number of unallocated copies and Ai the number of copies allocated to player i.

As in [15, 159], we assume non-increasing marginal valuations. For each player i,

the set of possible valuations is Θi
def
= {θi : [m] → R≥0 | θi(1) ≥ · · · ≥ θi(m) ≥ 0},

where for each valuation θi ∈ Θi and each copy j ∈ [m], θi(j) represents player i’s

marginal value for a j-th copy of the good. (We may also refer to such a θi as an

m-dimensional vector, and to θi(j) as its j-th coordinate.) The set of all possible

valuation profiles is Θ
def
= Θ1 × · · · ×Θn. The profile of the players’ true valuations is

θ∗
def
= (θ∗1, . . . , θ

∗
n) ∈ Θ.

The set of possible outcomes is Ω
def
= A×Rn

≥0. If (A,P) ∈ Ω, we refer to Pi as the

price charged to player i. The utility of a player i, with valuation θi, for an outcome

ω = (A,P) is Ui(θi, ω)
def
=
∑Ai

j=1 θi(j)− Pi.
For every set X, we denote by ∆(X) the set of all countably additive probability

measures on X. If ω ∈ ∆(Ω), then Ui(θi, ω) is the expected utility of player i.

Relative to a valuation profile θ, the social welfare of an outcome ω = (A,P) ∈ Ω,

or the social welfare of an allocation A ∈ A, is SW(θ, ω) = SW(θ, A)
def
=
∑

i

∑Ai
j=1 θi(j).

The maximum social welfare relative to θ is MSW(θ)
def
= maxA∈A SW(θ, A). The

maximum social welfare is MSW
def
= MSW(θ∗).

A mechanism M specifies, for each player i, a set of strategies Si. We interchange-

ably refer to each member of Si as a pure strategy/action/report of i, and, similarly,

to a member of ∆(Si) as a mixed strategy/action/report of i.1 After each player i,

simultaneously with his opponents, reports a strategy si in Si, M maps the reported

strategy profile s to an outcome M(s) ∈ Ω. If M is probabilistic, then M(s) ∈ ∆(Ω).2

When in a mechanism M the players jointly choose a profile of (possibly mixed)

strategies σ = (σ1, . . . , σn) ∈ ∆(S1)× · · · ×∆(Sn), we respectively denote by MP
i (σ)

and MA
i,j(σ) the expected price of player i and the probability that player i wins j

copies of the good.

1Often, in pre-Bayesian settings, the notion of a strategy and that of an action are distinct.
Indeed, a strategy si of a player i maps the set of all possible types of i to the set of i’s possible
actions/reports. But since strategies are universally quantified in all relevant definitions of this paper,
we need not separate (and for simplicity do not separate) the notions of strategies and actions.

2With our risk-neutral players, it would suffice to consider outcomes drawn from ∆(A)× Rn≥0.

18

1.2.2 Knightian Valuation Uncertainty

In our model the players are risk-neutral and a player i’s sole information about

the entire true valuation profile θ∗ = (θ∗1, . . . , θ
∗
n) consists of a non-empty set of

distributions, Ki ⊂ ∆(Θi), from one of which θ∗i has been drawn. (The players’ true

valuations are uncorrelated.)

Because a risk-neutral player cares only about his expected utility, and because in

an auction each Θi is convex, in our model a player i may ‘collapse’ each distribution

Di ∈ Ki to its expectation Eθi∼Di [θi] ∈ Θi. Accordingly, for auctions, our model can

be equivalently restated in the following non-distributional language.

Definition 1.1 (Knightian valuation model). For each player i, i’s sole information

about θ∗ is a non-empty set Ki ⊂ Θi, the candidate (valuation) set of i, such that

θ∗i ∈ Ki. We refer to an element of Ki as a candidate valuation. We denote by Ki

the set of all possible candidate sets of i, and let K def
= K1 × · · · ×Kn.

We stress that Ki can be an arbitrary subset of 2Θi and that, in our model, i has no

information about the true valuation θ∗j or the candidate set Kj of an opponent j.

In this paper, we refer to a player or an auction as Knightian to emphasize that

we are considering the player or the auction in the Knightian valuation model.

In this model, a mechanism’s performance will of course depend on the inaccuracy

of the players’ candidate sets, which we measure as follows.

Definition 1.2. For all players i, candidate set Ki, and copies j ∈ [m], we let

Ki(j)
def
= {θi(j) | θi ∈ Ki}, K⊥i (j)

def
= inf Ki(j), and K>i (j)

def
= supKi(j).

A candidate set Ki is (at most) δ-approximate if K>i (j)−K⊥i (j) ≤ δ for all j ∈ [m].

An auction is (at most) δ-approximate if, for each player i,

Ki ⊂ Kδ
i

def
= {Ki ∈ 2Θi |Ki is δ-approximate}.

We set Kδ def
= Kδ

1 × · · ·Kδ
n.

Note that a candidate set Ki may not be convex. For instance, in a single-good

auction, Ki may consist of the two valuations a and b, and thus not contain a+b
2

. Let

us stress that the possibility of ‘holes’ in Ki is the necessary sub-product of the fact

that each Ki is derived from an underlying set of distributions, Ki, which is allowed

to be totally arbitrary.3

3Note that candidate sets may be very expressive. In a single-good setting, consider a player
i who believes that his true valuation is either a or b, but more probably a than b. This belief
corresponds to the set of distributions K′i = {Dp | p ∈ [0.5, 1]} where each Dp is the distribution
taking value a with probability p, and value b with probability 1 − p. Then, if i collapses each
distribution Dp to its expected value, he de facto ends with the following set of candidate valuations:
K ′i = {pa + (1 − p)b | p ∈ [0.5, 1]} ⊆ Θi. (If, after translating the above belief to a new candidate
set K ′i, player i formed further beliefs about the probabilities of the valuations in K ′i, then he could
again translate these beliefs to a new candidate set K ′′i . And so on.)

19

1.3 The First Theorem

In this section, we prove that, under natural conditions, all dominant-strategy (and

ex-post Nash) mechanisms must yield inefficient allocations in the Knightian valuation

model. We stress that this result holds when such mechanisms are allowed to elicit

from each player not just a single valuation, but an arbitrary report: in particular, a

set of valuations.

Since it is easy to see that the revelation principle continues to apply in our setting

(see Appendix 1.A only for completeness sake), we state Theorem 1.6 in terms of

Knightian dominant-strategy truthfulness mechanisms, formally defined below.

Recall that Ki is the set of all possible candidate sets of player i.

Definition 1.3. A mechanism is Knightian direct if, for each player i, Si = Ki. Such

a mechanism M is Knightian dominant-strategy-truthful (Knightian DST) if

∀Ki, K
′
i ∈ Ki ∀K−i ∈ K−i ∀θi ∈ Ki Ui

(
θi,M(Ki, K−i)

)
≥ Ui

(
θi,M(K ′i, K−i)

)
.

To state Theorem 1.6, we also define a simple relation between candidate sets.

Definition 1.4. In an m-unit auction, two candidate sets Ki and K ′i in Ki are

• adjacent, if span
{(
θi(1)− θ′i(1), . . . , θi(m)− θ′i(m)

) ∣∣ θi, θ′i ∈ Ki ∩K ′i
}

= Rm, and

• connected, if there exist K
(1)
i , . . . , K

(t)
i ∈ Ki such that Ki = K

(1)
i , K ′i = K

(t)
i , and

K
(k)
i is adjacent to K

(k+1)
i for all k ∈ {1, . . . , t− 1}.

Example 1.5. When m = 1, that is, in the case of single-good auctions, each can-

didate set is a subset of the non-negative reals, and thus two candidate sets Ki and

K ′i in Ki are adjacent if and only if |Ki ∩K ′i| ≥ 2. Indeed, taking two different reals

x, y ∈ Ki ∩K ′i, the fact that x− y 6= 0 implies that the 1-dimensional vector (x− y)

spans the 1-dimensional space R. Accordingly, if the intervals [1, 3], [2, 4], and [3, 5]

are possible candidate sets in Ki, then [1, 3] is adjacent to [2, 4], [2, 4] is adjacent to

[3, 5], and [1, 3] is connected (but not adjacent) to [3, 5].

Consider next an m-unit auction. Let Ki be the candidate set consisting of all

the valuations θi ∈ Θi such that θi(j) ∈ [1, 3] for all j ∈ [m], and K ′i the candidate

set consisting of all the valuations θ′i ∈ Θi such that θ′i(j) ∈ [2, 4] for all j ∈ [m].

Then, Ki and K ′i are adjacent if they both belong to Ki. This is so because the set of

m-dimensional vectors
{(
θi(1)− θ′i(1), . . . , θi(m)− θ′i(m)

) ∣∣ θi, θ′i ∈ Ki ∩K ′i
}

contains

the m vectors (1, 0, . . . , 0), (0, 1, 0, . . . , 0), · · · , (0, . . . , 0, 1), which span Rm.

When we say that the candidate set is Ki, we assume that all (partial) beliefs that player i may
have about his own valuation θ∗i have already been taken into account.

20

Theorem 1.6. In an m-unit Knightian auction, for all δ > 0, all K ⊆ Kδ, all

(possibly probabilistic) Knightian DST mechanisms M ,4 all (K1, . . . , Kn) ∈ K, all

players i, all K ′i ∈ Ki connected to Ki, and all copies j ∈ [m],

MA
i,j(Ki, K−i) = MA

i,j(K
′
i, K−i) and MP

i (Ki, K−i) = MP
i (K ′i, K−i) .

The proof of Theorem 1.6 can be found in Appendix 1.B.

Theorem 1.6 essentially states that the probability that a Knightian DST mech-

anism M assigns a given number of copies of the good to a given player i, and also

the price player i pays, are independent of the candidate sets i reports, provided that

they are connected and that the reports of i’s opponents are fixed.

This independence from individual players’ reports prevents a Knightian DST

mechanism from guaranteeing high social welfare, when the players’ possible can-

didate sets are sufficiently rich. For instance, consider a single-good auction in

which δ = 2, and each Ki includes the intervals [0, 2], [1, 3], [2, 4], . . . , [B,B + 2]

for some large integer B. Then, no matter what the DST mechanism M might

be, when the reported profile of candidate sets is K =
(
[0, 2], [0, 2], . . . , [0, 2]

)
∈

K, one of the players, without loss of generality player 1, must receive the good

with probability at most 1/n: in symbols, MA
1,1(K) ≤ 1/n. This implies that

the probability that player 1 gets the good remains at most 1/n even when all

his opponents report the interval [0, 2] and he reports [B,B + 2]. This is so be-

cause the intervals [0, 2] and [B,B + 2] are connected and thus Theorem 1.6 implies

that MA
1,1

(
[0, 2], [0, 2], . . . , [0, 2]

)
= MA

1,1

(
[B,B + 2], [0, 2], . . . , [0, 2]

)
. Accordingly, if

[B,B + 2] were the true candidate set of player 1, and [0, 2] the true candidate set

for everyone else, then the maximum social welfare would be at least B, while the

expected social welfare delivered by M would be at most B/n+ 2.5

1.4 The Second Theorem
Our second theorem proves a very attractive relationship between a player’s can-

didate set and his undominated strategies in the Vickrey mechanism for multi-unit

4Note that Theorem 1.6 holds even if the mechanism M is allowed to know δ and K in advance.
5We note that such poor social-welfare performance indeed relies on the richness of the players’

possible candidate sets. If the players’ possible candidate sets were guaranteed to be sufficiently sep-
arated, then a properly designed dominant-strategy mechanism could always achieve the maximum
social welfare. For instance, consider an n-player auction of a single good where

• the inaccuracy parameter δ = 1/3,

• the set of possible candidate sets Ki = {[kn+ i, kn+ i+ 1
3] | k ∈ Z+} for each player i, and

• the mechanism M is such that (1) Si = {kn + i | k ∈ Z+} for each player i, and (2) for all
s ∈ S1 × · · · × Sn, M(s) = 2P(s), where 2P is the second-price mechanism.

Then, it is clear that (a) for player i whose true candidate set is [kn+ i, kn+ i+ 1
3], reporting kn+ i

is a dominant strategy, and (b) when dominant strategies are played, M produces an outcome with
maximum social welfare.

21

Knighitian auctions.

Recall that the Vickrey mechanism, denoted by Vickrey, is a direct mechanism (i.e.,

satisfies Si = Θi) and maps a profile of valuations θ ∈ Θ1 × · · · ×Θn, to an outcome

(A,P); where A ∈ arg maxA∈A SW(θ, A), Pi = MSW(θ−i) −
∑

k 6=i
∑Ak

j=1 θk(j), and

possible ties are broken lexicographically.6

For the Knightian valuation model, we define undominated strategies as follows.

Definition 1.7. In a mechanism M , a pure strategy si ∈ Si of a player i is (weakly)

dominated by another possibly mixed strategy σi ∈ ∆(Si) of i with respect to his Ki,

in symbols si ≺(i,Ki)
σi, if

(1) ∀θi ∈ Ki ∀s−i ∈ S−i Ui
(
θi,M(σi, s−i)

)
≥ Ui

(
θi,M(si, s−i)

)
, and

(2) ∃θi ∈ Ki ∃s−i ∈ S−i Ui
(
θi,M(σi, s−i)

)
> Ui

(
θi,M(si, s−i)

)
.7

A strategy si ∈ Si is (weakly Knightian) undominated, if there exists no σi ∈ ∆(Si)

such that si ≺(i,Ki)
σi. We denote the set of undominated strategies of player i by

UDi(Ki).

If K is a product or a profile of candidate sets, that is, if K = (K1, . . . , Kn) or

K = K1 × · · · ×Kn, then UD(K)
def
= UD1(K1)× · · · × UDn(Kn).

Our notion of an undominated strategy intends to capture the ‘weakest condition’

for which si should be discarded in favor of σi, and is a natural extension of its

classical counterpart.8

Note that Jackson’s more involved definition of an undominated strategy is not

necessary in our paper.9

Now let us formally state our second theorem.

6More precisely, on a reported valuation profile θ, the Vickrey mechanism sorts the values
{θi(j) | i ∈ [n], j ∈ [m]} in a non-increasing order, and then chooses the m largest entries to as-
sign the m copies of the good. Namely, if θi(1), θi(2), . . . , θi(j) belong to the largest m entries, but
not θi(j+ 1), then Vickrey assigns j copies of the good to player i. If ties occur in this ordering, that
is, if θi(j) = θi′(j

′), then θi(j) precedes θi′(j
′) if and only if either (1) i < i′ or (2) i = i′ and j < j′.

7This notion is thus different from strong dominance, where inequality (1) is always strict. For
strong dominance in the the exact-valuation case, see, for instance, [66, 95].

8Of course, other extensions are also possible. To express condition (2) in Definition 1.7, we must
quantify the true valuation θi ∈ Ki and the pure strategy subprofile of i’s opponents s−i ∈ S−i. There
are three alternatives to consider. Namely, (a) ∀θi∀s−i, (b) ∃θi∀s−i, and (c) ∀θi∃s−i. Alternatives
(a) and (b) do not yield the classical notion of (weak) dominance when Ki is a singleton. Alternative
(c) fails to capture the ‘weakest condition’ for which si should be discarded in favor of σi. (Indeed,
since σi is already no worse than si, for player i to discard strategy si in favor of σi, it should suffice
for si to be strictly worse than σi for a single possible valuation θi ∈ Ki.)

9To meaningfully deal with the possibility of having an infinite sequence of pure strategies one
dominating another, Jackson put forward, in the exact-valuation case, a more involved notion of
an undominated strategy [79]. However, this more involved notion is unnecessary, even in the
Knightian setting, for the class of bounded mechanisms. This class includes the Vickrey and all
finite mechanisms, and thus all mechanisms analyzed in this paper in undominated strategies.

22

Theorem 1.8. In an m-unit Knightian auction with the Vickrey mechanism, for

all players i and all candidate sets Ki, the set of undominated strategies UDi(Ki)

coincides with the set of all strategies vi ∈ Θi satisfying the following condition

∀j ∈ [m] vi(j) ∈
[
K⊥i (j), K>i (j)

]
.

Theorem 1.8 is proved in Appendix 1.C.

Theorem 1.8 is obvious for m = 1, but less obvious when there are multiple copies

of the good. In particular, a player i may consider ‘under-reporting’ his value for the

j-th copy of the good, but ‘over-reporting’ his value for the k-th copy. For example,

in a 3-unit auction, where Ki consists of all valuations θi ∈ Θi such that

θi(1) ∈ [100, 110], θi(2) ∈ [95, 105], and θi(3) ∈ [90, 100] ,

by reporting the valuation vi = (113, 98, 80), i over-reports his value for the first

copy but under-reports that for the third copy. Such a strategy vi is, in general,

not dominated by reporting the highest —respectively, the lowest— possible value

for each copy of the good: that is, it is not dominated by reporting (110, 105, 100)

—respectively, (100, 95, 90). However, one can still carefully construct a strategy v∗i
that dominates vi, and therefore conclude that a rational player will not use any

such strategy vi. In our example, such a v∗i could be (110, 98, 80), (113, 98, 90), or

(110, 98, 90). A general (but not the only) way to construct a v∗i dominating vi is

to set v∗i (j) = vi(j) for every copy j such that vi(j) belongs to [K⊥i (j), K>i (j)], set

v∗i (j) = K⊥i (j) if vi < K⊥i (j), and set v∗i (j) = K>i (j) if vi > K>i (j). (We rely

on the non-increasing marginal valuation assumption in order to show that the so-

constructed v∗i dominates vi.)

The above construction of v∗i is the key idea to show that every vi ∈ UDi(Ki)

satisfies vi(j) ∈
[
K⊥i (j), K>i (j)

]
for every copy j. A similar idea is needed to show

the other direction. The details can be found in Appendix 1.C.

Remark 1.9. For a Knightian player i, the set of undominated strategies UDi(Ki)

may strictly contain the candidate set Ki. For example, in a single-good second-price

auction, if Ki = {4, 7, 21}, then not only reporting 4, 7, or 21 is an undominated

strategy for player i, but so is reporting 9. As for another example, in a 2-unit

Vickrey auction, if Ki = {(78, 60), (80, 50)}, then not only reporting (78, 50) and

(80, 50), but also (79, 51), (79, 52), . . . , (79, 59), etc., are undominated strategies.

The multiplicity of undominated strategies in the two examples above emphasizes

that our Knightian player i has incomplete preferences. Assume for a moment that

he had complete preferences: for instance, maxmin preferences. Then, his only un-

dominated strategy (and thus his only dominant strategy) would consist of reporting

23

4 in the former example, and (78, 52) in the latter one.10

Theorem 1.8 has a simple corollary (proved for completeness in Appendix 1.D)

about the social-welfare performance of the Vickrey mechanism.

Corollary 1.10. In an m-unit Knightian auction, for all δ ≥ 0, all products K of

δ-approximate candidate sets, all profiles v ∈ UD(K), and all θ ∈ K

SW
(
θ,Vickrey(v)

)
≥ MSW(θ)− 2mδ .

That is, the social welfare realized by the Vickrey mechanism is at most 2mδ

away for the maximum one, no matter which undominated strategies the players may

choose. The following example shows that this performance guarantee of the Vickrey

mechanism is actually tight in the worst case.

Example 1.11. Consider a two-player 10-approximate m-unit auction in which the

candidate sets are

K1 =
{

(90, 90, . . . , 90), (100, 100, . . . , 100)
}

K2 =
{

(100, 100, . . . , 100), (110, 110, . . . , 110)
}
.

In this case, the Vickrey mechanism may miss the maximum social welfare by 2δm as

follows. Player 1 is ‘optimistic’ and bids the valuation v1 = (100, . . . , 100); player 2

is ‘pessimistic’ and bids v2 = (100, . . . , 100); the Vickrey mechanism (with the lexico-

graphic tie-breaking rule) allocates all copies of the good to player 1; the true valuation

θ∗1 of player 1 is (90, . . . , 90); and the true valuation θ∗2 of player 2 is (110, . . . , 110).

Accordingly, the realized social welfare is 90m, while the maximum one is 110m =

90m+ 2mδ. �

The relevance of worst-case analyses can of course be debated, but if the worst-case

performance is good, then the typical performance can only be better. In our setting,

a social-welfare loss of 2mδ is small whenever δ is small relative to MSW(θ)/m. For

instance, this is the case of a 10-unit auction in which a player’s valuation for each

copy of the good is a million dollars plus or minus $100. Indeed, in this case, Corollary

1 implies that the Vickrey mechanism guarantees that the realized social welfare will

10In the spirit of Gilboa and Schmeidler [70], given an outcome ω = (A,P), we can define the worst-

case utility of a player i with candidate set Ki to be minθi∈Ki Ui(θi, ω) = minθi∈Ki

∑Ai

j=1 θi(j)−Pi.
In the above 2-unit auction example, this worst-case utility is −Pi, if Ai = 0; is 78−Pi, if Ai = 1; and
is 130−Pi, if Ai = 2. Therefore, i’s worst-case utility coincides with the utility of a (non-Knightian)
player whose true valuation is precisely (78, 52). Indeed, minθi∈Ki

Ui(θi, ω) = Ui
(
(78, 52), ω

)
for all

possible outcomes ω. Now, a player i with maxmin preferences compares every two outcomes ω and
ω′ using his worst-case utility function, minθi∈Ki Ui(θi, ·). It is thus equivalent for such a player i
to compare ω and ω′ using the exact utility function Ui

(
(78, 52), ·

)
. Accordingly, since the Vickrey

mechanism is dominant-strategy in the classical setting, it is a dominant strategy for i to report
(78, 52) in the above 2-unit auction.

24

be at least ten millions minus $2, 000, no matter how the players may choose their

undominated strategies. (A performance loss that is at most linear in δ should not be

underestimated. After all, Theorem 1.6 shows that the social welfare performance of

any DST mechanism can be terrible, no matter how small, but positive, δ may be.)

1.5 The Third Theorem
Our third theorem shows that the worst-case social welfare performance of the Vickrey

mechanism is essentially optimal, in the Knightian setting, relative to all possible

undominated-strategy mechanisms.

Note that, in principle, there may be an undominated-strategy mechanism M

missing the maximum social welfare by at most δm.11 Our upcoming Theorem 1.14,

however, rules out the existence of such mechanisms, so long as they give each player

a finite set of strategies.12

We stress that Theorem 1.14 applies not just to finite mechanisms eliciting a single

valuation from each player, but to all finite mechanisms, including those allowing a

player to report a set of valuations. Thus, in our Knightian valuation model, the

social welfare optimality of the Vickrey mechanism (which allows a player to report

only a single valuation) may be surprising.

We could simply state Theorem 1.14 by saying that, for every finite mechanism

M , there exists a profile of δ-approximate candidate sets for which M misses the

maximum social welfare by essentially 2mδ: more precisely, by 2mδ(1 − 1/n) + ε,

where ε is an arbitrarily small positive constant. To be more informative, however,

we wish to state Theorem 1.14 so as to highlight the candidate set profiles causing

this maximal loss in social welfare.

Let V and W be two sets of real numbers (with diameter at most δ and with at

least two elements in common), whose union has diameter at least 2δ − ε/m. For

instance, V = [x − δ, x] and W = [x − 2δ + ε/m, x − δ + ε/m]. Then, the following

definition expresses that for each player there are at least two candidate sets, one

for which the value of each copy of the good is in V , and one for which that the

value of each copy of the good is in W . More precisely, recalling that Ki is the

set of all possible candidate sets of player i, that K = (K1, . . . ,Kn), and that in a

δ-approximate multi-unit Knightian auction K ⊆ Kδ, we have the following

Definition 1.12. In a δ-approximate multi-unit Knightian auction, K is ε-basic if

there exist two subsets V and W of non-negative numbers such that

11For instance, a mechanism M could achieve such performance by asking each player i to report
a single valuation, and incentivizing him to report a valuation vi which is the ‘mid-point’ of his
candidate set Ki: i.e., vi(j) = 1

2 (K⊥
i (j) +K>

i (j)) for all j ∈ [m].
12This finiteness restriction, although crucial for our proof, is quite mild in practice (and is indeed

natural when mechanisms are implemented via computers). The Vickrey mechanism itself becomes
finite if it explicitly asks each player to report, for each copy of the good, an integral number of
cents between 0 and 10100.

25

(a) maxV −minV ≤ δ and maxW −minW ≤ δ,

(b) |V ∩W | > 1 and maxV −minW ≥ 2δ − ε/m, and

(c) for every player i, Ki contains the following two candidate sets

K̃i
def
= {θi ∈ Θi | ∀j, θi(j) ∈ V } and K̃ ′i

def
= {θi ∈ Θi | ∀j, θi(j) ∈ W} .

Example 1.13. Consider a 3-unit 10-approximate Knightian auction, in which for

each player i, Ki includes the following two candidate sets:

[88, 98]× [88, 98]× [88, 98] and

[80, 90]× [80, 90]× [80, 90] .

Then, K is 6-basic (corresponding to V = [88, 98] and W = [80, 90]).

There is no magic about the choice of the numbers 80 and 88 in the above exam-

ple. The main point is that the intersection of the two intervals [80, 90] and [88, 98]

coincides with the interval [88, 90], whose length is ε/m = 6/3 = 2.

Theorem 1.14. In a multi-unit Knightian auction, for all δ > 0, all ε > 0, all ε-

basic K ⊆ Kδ, all (possibly probabilistic) finite mechanisms M , there exist products

K ∈ K, valuation profiles θ ∈ K, and undominated strategy profiles s ∈ UD(K),

such that

E
[
SW(θ,M(s))

]
≤ MSW(θ)− 2δm(1− 1/n) + ε .

Above, the expectation is over the possible random choices of the mechanism M .

The proof of Theorem 1.14 can be found in Appendix 1.E. Although mechanism

finiteness is a natural restriction in practice, we wish to remark that Theorem 1.14

continues to hold under alternative but more complex assumptions.13

Appendix

1.A Knightian Revelation Principle

Let us explicitly show that a version of the revelation principle [69, 50, 110] holds

also in our Knightian setting. Recall that Ki is the set of all possible candidate sets

for player i.

13As it will become clear from our proof, Theorem 1.14 also holds for all bounded mechanisms
such that, for all players i, the strategy set Si is a compact Hausdorff space and, for all copies
j, the families of allocation functions

{
MA
i,j(si, ·)

}
si∈Si

and price functions
{
MP
i (si, ·)

}
si∈Si

are
equicontinuous. However, the Vickrey mechanism can be trivially modified to be finite, but not
trivially made equicontinuous.

26

Definition 1.15. Let M be a mechanism in which Si is the set of actions of player i.

Then, the profile of functions
(
si : Ki → ∆(Si)

)
i

is an ex-post (possibly mixed) Nash

equilibrium of M if for all K ∈ K, all players i, all ai ∈ Si, and all θi ∈ Ki,

Ui(θi,M(si(Ki), s−i(K−i))) ≥ Ui(θi,M(ai, s−i(K−i))) .

Lemma 1.16 (Revelation Principle). Let M be a mechanism that has an ex-post

Nash equilibrium s. Then, there exists a Knightian DST mechanism M ′ such that

∀K ∈ K M ′(K1, . . . , Kn) = M(s1(K1), . . . , sn(K1)) .

Proof. Let M ′ be the Knightian direct mechanism so defined:

∀K ∈ K M ′(K1, . . . , Kn)
def
= M(s1(K1), . . . , sn(K1)) .

(The above equality is between distributions if M is probabilistic.)

All that is left to prove is that the mechanism M ′ is dominant-strategy truthful.

To this end, let Ki be the true candidate set of player i. Then, for all K ′i ∈ Ki, all

θi ∈ Ki, and all K−i ∈ K−i,

U
(
θi,M

′(Ki, K−i)
)

= U
(
θi,M(si(Ki), s−i(K−i))

)
≥ U

(
θi,M(si(K

′
i), s−i(K−i))

)
= U

(
θi,M

′(K ′i, K−i)
)
,

where the inequality follows from Definition 1.15 of the ex-post Nash equilibrium by

setting ai = si(K
′
i). This completes the proof. �

Because every dominant-strategy mechanism must have an ex-post Nash equilib-

rium (consisting of each player choosing his dominant strategy), the above theorem

holds also when M is a dominant-strategy mechanism.

1.B Proof of Theorem 1.6
We start by proving, as a separate claim, that Theorem 1.6 holds in the case of

adjacent (instead of connected) candidate sets. Namely,

Claim 1.17. For every player i, every two adjacent candidate sets Ki, K
′
i ∈ Ki of i,

and every subprofile K−i of candidate sets for i’s opponents,

MA
i,j(Ki, K−i) = MA

i,j(K
′
i, K−i) and MP

i (Ki, K−i) = MP
i (K ′i, K−i) .

Proof. Because the true candidate set of player i may coincide with Ki, and because,

when this is the case, reporting Ki should dominate reporting K ′i, we have that, for

all θ′′i ∈ Ki, the following inequality holds:

m∑
j=1

MA
i,j(Ki, K−i)·

j∑
`=1

θ′′i (`)−MP
i (Ki, K−i) ≥

m∑
j=1

MA
i,j(K

′
i, K−i)·

j∑
`=1

θ′′i (`)−MP
i (K ′i, K−i).

(1.1)

Similarly, because the true candidate set of player i may coincide with K ′i, and

because, when this is the case, reporting K ′i should dominate reporting Ki, we also

27

have that, for all θ′′i ∈ K ′i, the following inequality holds:

m∑
j=1

MA
i,j(K

′
i, K−i)·

j∑
`=1

θ′′i (`)−MP
i (K ′i, K−i) ≥

m∑
j=1

MA
i,j(Ki, K−i)·

j∑
`=1

θ′′i (`)−MP
i (Ki, K−i).

(1.2)

Next, for every pair of valuations θi, θ
′
i ∈ Ki ∩K ′i, we choose θ′′i = θi in inequality

(1.1) and θ′′i = θ′i in inequality (1.2). Summing up the resulting inequalities, the MP
i

price terms cancel out, yielding the following inequality:
m∑
j=1

MA
i,j(Ki, K−i) ·

j∑
`=1

(
θi(`)− θ′i(`)

)
≥

m∑
j=1

MA
i,j(K

′
i, K−i) ·

j∑
`=1

(
θi(`)− θ′i(`)

)
. (1.3)

Similarly, setting θ′′i = θ′i in (1.1) and θ′′i = θi in (1.2), and summing up the resulting

inequalities, we deduce that:
m∑
j=1

MA
i,j(Ki, K−i) ·

j∑
`=1

(
θi(`)− θ′i(`)

)
≤

m∑
j=1

MA
i,j(K

′
i, K−i) ·

j∑
`=1

(
θi(`)− θ′i(`)

)
. (1.4)

(1.3) and (1.4) together imply, after some rearrangement of the terms, that

m∑
j=1

(
MA

i,j(Ki, K−i)−MA
i,j(K

′
i, K−i)

)
·
(j∑
`=1

θi(`)− θ′i(`)
)

= 0 . (1.5)

Now, let us denote by a them-dimensional vector such that aj
def
=
∑m

k=jM
A
i,k(Ki, K−i)−

MA
i,k(K

′
i, K−i) for every j ∈ [m]. Then, (1.5) can be re-written as saying that the fol-

lowing inner product between two vectors is zero:(
a1, . . . , am

)
·
(
θi(1)− θ′i(1), . . . , θi(m)− θ′i(m)

)
= 0 . (1.6)

Finally, using our assumption that the vectors
(
θi(1)− θ′i(1), . . . , θi(m)− θ′i(m)

)
span

the entire Rm, we easily conclude that (a1, . . . , am) = (0, . . . , 0), which in turn implies

the desired equality of the allocation probabilities: MA
i,j(Ki, K−i) = MA

i,j(K
′
i, K−i).

Plugging this equality into (1.1) and (1.2) immediately yields the desired equality of

the prices: MP
i (Ki, K−i) = MP

i (K ′i, K−i). �

It is now straightforward to see that Theorem 1.6 follows by the definition of

connected candidate sets, and the repeated applications of the above claim. Namely,

recall that Ki, K
′
i ∈ Ki are connected if there exist K

(1)
i , . . . , K

(t)
i ∈ Ki such that

Ki = K
(1)
i , K ′i = K

(t)
i , and K

(k)
i is adjacent to K

(k+1)
i for all k ∈ {1, . . . , t − 1}.

Therefore, we conclude that, for all j ∈ [m],

MA
i,j(K

(1)
i , K−i) = MA

i,j(K
(2)
i , K−i) = · · · = MA

i,j(K
(t)
i , K−i) ,

and similarly that

MP
i (K

(1)
i , K−i) = MP

i (K
(2)
i , K−i) = · · · = MP

i (K
(t)
i , K−i) . �

28

1.C Proof of Theorem 1.8
Recall that the Vickrey mechanism is direct, that is, Si = Θi for all players i. Re-

call also that multi-unit auctions have non-increasing marginal valuations, that is,

θi(1) ≥ θi(2) ≥ · · · ≥ θi(m) for each θi ∈ Θi. Therefore, K⊥i (1), . . . , K⊥i (m) and

K>i (1), . . . , K>i (m) are non-decreasing sequences. That is, K>i , K
⊥
i ∈ Θi. Accord-

ingly, both K>i and K⊥i are valid reports for player i in the Vickrey mechanism.

We start by proving, by contradiction, that

vi ∈ UDi(Ki) =⇒ vi(j) ≥ K⊥i (j) for all j ∈ [m]. (1.7)

Assume that implication (1.7) is false; let j∗ ∈ [m] be the first coordinate j such that

vi(j) < K⊥i (j); and define the function v∗i : [m]→ R≥0 as follows:

v∗i (j) =

{
vi(j), if j 6= j∗;

K⊥i (j), if j = j∗.

Since vi and K⊥i are monotonically non-increasing, so is v∗i . Indeed,

• if j∗ > 1, then v∗i (j
∗ − 1) = vi(j

∗ − 1) ≥ K⊥i (j∗ − 1) ≥ K⊥i (j∗) = v∗i (j
∗)

• if j∗ < m, then v∗i (j
∗) = K⊥i (j∗) > vi(j

∗) ≥ vi(j
∗ + 1) = v∗i (j

∗ + 1) .

Thus also v∗i is a valid valuation in Θi. We now reach a contradiction by showing

that v∗i weakly dominates vi, that is,

∀ θi ∈ Ki ∀ v−i Ui
(
θi,Vickrey(v

∗
i , v−i)

)
≥ Ui

(
θi,Vickrey(vi, v−i)

)
, (1.8)

∃ θ′i ∈ Ki ∃ v′−i Ui
(
θ′i,Vickrey(v

∗
i , v
′
−i)
)
> Ui

(
θ′i,Vickrey(vi, v

′
−i)
)
. (1.9)

To show (1.8), choose arbitrarily v−i ∈ Θ−i, and consider the following two cases:

(1) In Vickrey(v∗i , v−i) and Vickrey(vi, v−i), i receives the same number of copies.

In this case, inequality (1.8) holds because its two sides are equal for all θi.

(2) In Vickrey(v∗i , v−i) and Vickrey(vi, v−i), i receives different numbers of copies.

In this case, one can carefully verify that player i wins j∗ copies of the good in

Vickrey(v∗i , v−i) and only j∗ − 1 copies in Vickrey(vi, v−i).
14 Thus, (1.8) holds

because of the following two reasons:

• i’s price for his extra j∗-th copy of the good is ≤ K⊥i (j∗).

14Recall that, when each player reports a valuation vi, the Vickrey mechanism orders the nm
values {vi(j) | i ∈ [n], j ∈ [m]} (breaking ties lexicographically), and allocates the m copies of the
good by looking at the first m values in this order. Since the only difference between v∗i and vi
is that v∗i (j∗) > vi(j

∗), the ordering of the reported nm values is minimally affected. That is, if
player i receives different numbers of copies in outcome (vi, v−i) and outcome (v∗i , v−i), then it must
be that vi(j

∗) is outside the largest m numbers under (vi, v−i), but v∗i (j∗) is within the largest m
numbers under (v∗i , v−i). This implies that i wins j∗ − 1 copies in Vickrey(vi, v−i) but j∗ copies in
Vickrey(v∗i , v−i).

29

Indeed, Vickrey guarantees that i pays for his j∗-th copy at most the value

he reports for it. That is, for his j∗-th copy, i pays at most v∗i (j
∗), which

in turn is equal to K⊥i (j∗).

• i’s value for this j∗-th copy is ≥ K⊥i (j∗).

Indeed, for any candidate valuation θi in Ki, θi(j
∗) ≥ K⊥i (j∗).

Therefore, inequality (1.8) holds. Let us now show that also inequality (1.9) holds.

To do so, we need to construct a ‘witness’ candidate valuation θ′i ∈ Ki and a ‘witness’

strategy sub-profile v′−i. In fact, we construct some v′−i so that (1.9) holds for all θ′i.

Let v′−i be the strategy subprofile in which, for every player k 6= i,

∀j ∈ [m] v′k(j)
def
= x

def
=
vi(j

∗) +K⊥i (j∗)

2
< K⊥i (j∗) .

Then, player i wins exactly j∗ copies in Vickrey(v∗i , v
′
−i) and pays x for each one of

them; and wins exactly j∗ − 1 copies in Vickrey(vi, v
′
−i) and pays x for each one of

them. Indeed, there are exactly j∗ − 1 numbers greater than x in vi, exactly j∗ in

v∗i , and x is the reported value of every other player, in v′−i, for every single copy of

the good. As a result, i’s utility in Vickrey(v∗i , v
′
−i) is strictly greater than that in

Vickrey(vi, v
′
−i). This is so because in the outcome Vickrey(v∗i , v

′
−i), i pays an extra

price x for his j∗-th copy, while being guaranteed that his true valuation for the j∗-th

copy, θi(j
∗), is strictly larger than x, because x < K⊥i (j∗) ≤ θi(j

∗). Therefore, we

conclude that (1.9) holds for all candidate θ′i ∈ Ki and the above defined v′−i.

Since both (1.8) and (1.9) hold, valuation v∗i (weakly) dominates vi, contradicting

the hypothesis that vi ∈ UDi(Ki). This contradiction proves (1.7).

An absolutely symmetrical argument shows that15

vi ∈ UDi(Ki) =⇒ vi(j) ≤ K>i (j) for all j ∈ [m]. (1.10)

Together, statements (1.7) and (1.10) imply that all undominated strategies vi ∈
UDi(Ki) satisfy vi(j) ∈ [K⊥i (j), K>i (j)] for each copy j.

Let us now prove the other direction: namely, that every strategy vi satisfying

vi(j) ∈ [K⊥i (j), K>i (j)] for each copy j is undominated for player i.

We proceed by contradiction. Suppose that there exists a valuation v∗i that weakly

dominates vi. We are going to derive a contradiction by showing that

∃ θ′i ∈ Ki ∃ v′−i Ui
(
θi,Vickrey(v

∗
i , v
′
−i)
)
< Ui

(
θi,Vickrey(vi, v

′
−i)
)
. (1.11)

Since, by the definition of weak dominance, v∗i must be different from vi, there are

two (not mutually exclusive) cases to consider:

(a) v∗i (j) > vi(j) for some j ∈ [m], and

(b) v∗i (j) < vi(j) for some j ∈ [m].

In case (a), let

15In this symmetrical case, one needs to define j∗ ∈ [m] to be the last coordinate such that
vi(j

∗) > K>
i (j).

30

• j∗ be the first coordinate j ∈ [m] such that v∗i (j) > vi(j),

• y be a real number such that v∗i (j
∗) > y > vi(j

∗), and

• ε be a real number in the open interval
(
0, y − vi(j∗)

)
.

To show (1.11), we let θ′i be an arbitrary valuation in Ki satisfying θ′i(j
∗) ≤ vi(j

∗)+ε.

(Such a valuation always exists since K⊥i (j∗) = inf{θi(j∗) | θi ∈ Ki} ≤ vi(j
∗).) Next,

we construct the required strategy sub-profile v′−i as follows: for each player k 6= i

and each copy j, v′k(j)
def
= y. Let us now compare player i’s utilities in the outcomes

Vickrey(v∗i , v
′
−i) and Vickrey(vi, v

′
−i).

In Vickrey(v∗i , v
′
−i), i wins at least j∗ copies, because v∗i (1) ≥ · · · ≥ v∗i (j

∗) > y;

moreover, he pays y for each such copy, because y is the value that every other player

reports, in v′−i, for every single copy of the good. By contrast, in Vickrey(vi, v
′
−i), i

wins exactly j∗ − 1 copies, because vi(1) ≥ · · · ≥ vi(j
∗ − 1) ≥ v∗i (j

∗ − 1) > y and

vi(j
∗) < y; moreover, he again pays y for each of them. Thus, to prove that

Ui
(
θi,Vickrey(v

∗
i , v
′
−i)
)
< Ui

(
θi,Vickrey(vi, v

′
−i)
)
,

it suffices to point out that, for each copy j ≥ j∗ that i wins in Vickrey(v∗i , v
′
−i), i’s

true value is θ′i(j) ≤ θ′i(j
∗) ≤ vi(j

∗) + ε < y. This ends the proof of (1.11) in case (a).

In case (b), we instead let j∗ be the last coordinate j ∈ [m] such that v∗i (j) < vi(j).

An absolutely symmetrical argument shows that (1.11) also holds for this case.

In sum, Theorem 1.8 holds. �

1.D Proof of Corollary 1.10

Let v ∈ UD(K) be any profile of undominated strategies, and A = (A0, A1, . . . , An)

represent the allocation in the outcome Vickrey(v), where each player i receives Ai
copies of the goods, and A0 is the number of unallocated copies. For any θ ∈ K, let

B = (B0, B1, . . . , Bn) represent the allocation that maximizes social welfare under θ,

i.e., B = arg maxB∈A
{∑n

i=1

∑Bi
`=1 θi(`)

}
. Then,

SW(θ,Vickrey(v)) =
n∑
i=1

Ai∑
`=1

θi(`)
(1)

≥
n∑
i=1

Ai∑
`=1

(
K>i (`)− δ

) (2)

≥
n∑
i=1

Ai∑
`=1

(
vi(`)− δ

)
(3)

≥
(n∑
i=1

Ai∑
`=1

vi(`)
)
−mδ

(4)

≥
(n∑
i=1

Bi∑
`=1

vi(`)
)
−mδ

(5)

≥
(n∑
i=1

Bi∑
`=1

K⊥i (`)
)
−mδ

(6)

≥
(n∑
i=1

Bi∑
`=1

(θi(`)− δ)
)
−mδ

(7)

≥ MSW(θ)− 2mδ.

Above

• Inequality (1) holds because θ ∈ K, and thus θi(`) ≥ K⊥i (`) ≥ K>i (`)− δ;
• Inequality (2) holds by Theorem 1.8;

• Inequality (3) holds because we have only m copies of the good:
∑n

i=1Ai ≤ m;

• Inequality (4) holds because the Vickrey mechanism maximizes social welfare

31

with respect to v, and thus, relative to v, (A0, . . . , An) is no worse than any

other allocation, and in particular no worse than (B0, . . . , Bn);

• Inequality (5) holds again by Theorem 1.8;

• Inequality (6) holds because θ ∈ K, and thus θi(`) ≤ K>i (`) ≤ K⊥i (`) + δ; and

• Inequality (7) holds because of the definition of MSW(θ) and the fact that∑n
i=1 Bi ≤ m. �

1.E Proof of Theorem 1.14

1.E.1 A Structural Lemma

The following lemma applies to all finite mechanisms, including those that allow

players to report sets of valuations, or anything else. (Indeed, the revelation principle

no longer holds for mechanisms that are not dominant-strategy or ex-post Nash. Thus,

we must be able to deal with general mechanisms with arbitrary strategy spaces.)

Lemma 1.18. Let M be a finite mechanism and i a player, let x = (x1, . . . , xm) and

y = (y1, . . . , ym) be two valuations in Θi such that xj > yj for all copies j ∈ [m], and

let Ki and K̃i be two candidate sets for i such that,

∀ t ∈ {0, 1, . . . ,m} (x1, . . . , xt, yt+1, . . . , ym) ∈ Ki ∩ K̃i.
16 (1.12)

Then, for every ε > 0, there are mixed strategies σi ∈ ∆(UDi(Ki)) and σ̃i ∈ ∆(UDi(K̃i))

such that, for all s−i ∈ S−i and all j ∈ [m],∣∣MA
i,j(σi, s−i)−MA

i,j(σ̃i, s−i)
∣∣ < ε .17

Proof. First of all, it is simple to see (but anyway proved in Appendix 1.F) that for

every finite mechanism, the set of undominated strategies of a Knightian player is

always non-empty. Therefore, the sets UDi(Ki) and UDi(K̃i) are both non-empty. If

there exists a common (pure) strategy si ∈ UDi(Ki) ∩ UDi(K̃i), then setting σi =

σ̃i = si proves Lemma 1.18. Therefore, let us assume in the rest of the proof that

UDi(Ki) and UDi(K̃i) are totally disjoint.

Let si be a pure strategy in UDi(Ki). Then, UDi(Ki)∩UDi(K̃i) = ∅ implies that

si 6∈ UDi(K̃i). By definition, si 6∈ UDi(K̃i) implies the existence of a (possibly mixed)

strategy σ̃i ∈ ∆(UDi(K̃i)) that (weakly) dominates si for player i with respect to

candidate set K̃i. In symbols, as per Definition 1.7, σ̃i �(i,K̃i)
si.

16Recall that all valuations in Θi are non-increasing. Our chosen vectors (x1, . . . , xt, yt+1, . . . , ym)
are indeed non-increasing, because we have xj > yj and both x and y are non-increasing.

17In fact, Lemma 1.18 can be strengthened to ensure that the prices are close too: namely,∣∣MP
i (σi, s−i) −MP

i (σ̃i, s−i)
∣∣ < ε. However, this strengthened version of Lemma 1.18 is not needed

in order to prove Theorem 1.14.

32

Next, we argue that

∃ τi ∈ ∆(UDi(Ki)) such that τi �(i,Ki)
σ̃i .

18 (1.13)

Let us write the possibly mixed strategy σ̃i as a sum of pure ones, σ̃i =
∑

t∈X α
(t)s̃

(t)
i .

Here, X is a finite index set, each s̃
(t)
i is a pure strategy from UDi(K̃i), each α(t) > 0,

and
∑

t∈X α
(t) = 1. Invoking again the disjointedness of UDi(Ki) and UDi(K̃i), we

deduce that s̃
(t)
i 6∈ UDi(Ki) for each t ∈ X. This implies the existence of a strategy

τ
(t)
i ∈ ∆(UDi(Ki)) such that τ

(t)
i �(i,Ki)

s̃
(t)
i . Thus, by defining τi

def
=
∑

t∈X α
(t)τ

(t)
i , we

have that τi dominates σ̃i. Thus, (1.13) holds.

Similarly, we could argue that there exists some τ̃i ∈ ∆(UDi(K̃i)) such that

τ̃i �(i,K̃i)
τi. Continuing in this fashion, going back and forth between ∆(UDi(Ki))

and ∆(UDi(K̃i)), we obtain an infinite chain of (possibly repeating) strategies,

σ
(1)
i ≺(i,K̃i)

σ̃
(1)
i ≺(i,Ki)

σ
(2)
i ≺(i,K̃i)

σ̃
(2)
i ≺(i,Ki)

· · ·
This (weak) dominance chain implies the following utility inequalities: for all s−i ∈
S−i and all k ∈ N:

∀θ̃i ∈ K̃i Ui
(
θ̃i,M(σ

(k)
i , s−i)

)
≤ Ui

(
θ̃i,M(σ̃

(k)
i , s−i)

)
∀θi ∈ Ki Ui

(
θi,M(σ̃

(k)
i , s−i)

)
≤ Ui

(
θi,M(σ

(k+1)
i , s−i)

) (1.14)

Next, for every t ∈ {0, 1, . . . ,m}, we define

zt
def
= (zt,1, zt,2, . . . , zt,m)

def
= (x1, x2, . . . , xt, yt+1, . . . , ym) ∈ Ki ∩ K̃i .

Choosing θi = θ̃i = zt in (1.14), we obtain that for all s−i ∈ S−i and all k ∈ N,

Ui
(
θ̃i,M(σ

(k)
i , s−i)

)
≤ Ui

(
θ̃i,M(σ̃

(k)
i , s−i)

)
= Ui

(
θi,M(σ̃

(k)
i , s−i)

)
≤ Ui

(
θi,M(σ

(k+1)
i , s−i)

)
.

Putting together the above inequalities for k = 1, 2, . . . , we get the following infinite

and non-decreasing sequence of real numbers (for each s−i ∈ S−i):
Ui
(
zt,M(σ

(1)
i , s−i)

)
≤ Ui

(
zt,M(σ̃

(1)
i , s−i)

)
≤ Ui

(
zt,M(σ

(2)
i , s−i)

)
≤ · · ·

This sequence is upperbounded by x1 + · · · + xm. (Indeed, zt,l ≤ xl for each l. So,

the i’s valuation is at most x1 + · · · + xm, while i’s price is non-negative.) Thus,

because of the Bolzano-Weierstrass theorem (i.e., because any non-decreasing and

upper bounded sequence of real numbers must converge), for every s−i ∈ S−i and

t ∈ {0, 1, . . . ,m}, letting D
def
= minl∈[m]{xl − yl}, there must exist some H

(s−i,t)
ε ∈ N

such that, for all k > H
(s−i,t)
ε :∣∣∣∣(∑j∈[m]M

A
i,j(σ

(k)
i , s−i)

(∑j
l=1zt,l

)
−MP

i (σ
(k)
i , s−i)

)
−
(∑

j∈[m]M
A
i,j(σ̃

(k)
i , s−i)

(∑j
l=1zt,l

)
−MP

i (σ̃
(k)
i , s−i)

)∣∣∣∣
18Note that, while we have only defined what it means for a pure strategy to be dominated by

a possibly mixed one, the definition trivially extends to the case of dominated strategies that are
mixed, as is the case in “τi �(i,Ki)

σ̃i” in (1.13).

33

=
∣∣Ui(zt,M(σ

(k)
i , s−i)

)
− Ui

(
zt,M(σ̃

(k)
i , s−i)

)∣∣ ≤ εD

4
. (1.15)

At this point, we invoke the finiteness of the mechanism in order to define the following

maximum value:

Hε
def
= max

{
H(s−i,t)
ε : s−i ∈ S−i, t ∈ {0, 1, . . . ,m}

}
∈ N .

As a result, (1.15) holds for every k > Hε, s−i ∈ S−i, and t ∈ {0, 1, . . . ,m}. We

now claim that, by picking an arbitrary k > Hε, the strategies σ
(k)
i and σ̃

(k)
i must be

the two ‘sufficiently close’ strategies we are looking for.

To prove this, consider an arbitrary strategy subprofile s−i ∈ S−i and an integer

t ∈ [m], and apply (1.15) twice, once for t and once for t−1. Combining the resulting

two inequalities and applying the triangle inequality, we have:19

εD

2
≥
∣∣∣∣ (∑

j∈[m]M
A
i,j(σ

(k)
i , s−i)

(∑j
l=1zt,l

)
−MP

i (σ
(k)
i , s−i)

)
−
(∑

j∈[m]M
A
i,j(σ̃

(k)
i , s−i)

(∑j
l=1zt,l

)
−MP

i (σ̃
(k)
i , s−i)

)
−
(∑

j∈[m]M
A
i,j(σ

(k)
i , s−i)

(∑j
l=1zt−1,l

)
−MP

i (σ
(k)
i , s−i)

)
+
(∑

j∈[m]M
A
i,j(σ̃

(k)
i , s−i)

(∑j
l=1zt−1,l

)
−MP

i (σ̃
(k)
i , s−i)

) ∣∣∣∣
=

∣∣∣∣(∑m
j=tM

A
i,j(σ

(k)
i , s−i)

(
xt − yt

))
−
(∑m

j=tM
A
i,j(σ̃

(k)
i , s−i)

(
xt − yt

))∣∣∣∣
= (xt − yt)

∣∣∣∣(∑m
j=tM

A
i,j(σ

(k)
i , s−i)

)
−
(∑m

j=tM
A
i,j(σ̃

(k)
i , s−i)

)∣∣∣∣ ,
which further implies, using xt − yt ≥ D > 0, that∣∣∣∣(∑m

j=tM
A
i,j(σ

(k)
i , s−i)

)
−
(∑m

j=tM
A
i,j(σ̃

(k)
i , s−i)

)∣∣∣∣ ≤ ε

2
. (1.16)

Let us now use (1.16) to argue that the following set of inequalities hold:

∀t ∈ [m]
∣∣∣MA

i,t(σ
(k)
i , s−i)−MA

i,t(σ̃
(k)
i , s−i)

∣∣∣ ≤ ε . (1.17)

Indeed, for t = m, (1.17) can be derived by plugging t = m into (1.16). Else, for each

t ∈ {1, 2, . . . ,m− 1}, we apply (1.16) twice, once for t and once for t+ 1, and again

combine the resulting inequalities with the triangle inequality to deduce (1.17).

This completes the proof of Lemma 1.18. �

1.E.2 Deducing Theorem 1.14 from Lemma 1.18

Because K is ε-basic, let V and W be the corresponding subsets of reals from

Definition 1.12. Denote by a, b ∈ V ∩ W any two disjoint reals in V ∩ W such

that a > b. For each player i, consider the following two δ-approximate candidate

19That is, |a− b| ≤ ε and |c− d| ≤ ε imply |(a− b)− (c− d)| ≤ 2ε.

34

sets

K̃i
def
= {θi ∈ Θi | ∀j, θi(j) ∈ V } and K̃ ′i

def
= {θi ∈ Θi | ∀j, θi(j) ∈ W} ,

and according to the ε-basic assumption on Ki, we have K̃i, K̃
′
i ∈ Ki. Next, consider

the following two valuations that belong to Θi for every i:

x = (a, a, . . . , a) and y = (b, b, . . . , b) .

It is simple to verify that x, y, K̃i and K̃ ′i satisfy the hypothesis of Lemma 1.18 (or

more precisely, (1.12)). Thus, for any ε′ > 0, the following holds:

for all i ∈ [n] there exist σi ∈ ∆(UDi(K̃i)) and σ′i ∈ ∆(UDi(K̃
′
i)) such that

∀s−i ∈ S−i ∀j ∈ [m]
∣∣MA

i,j(σi, s−i)−MA
i,j(σ

′
i, s−i)

∣∣ < ε′ .
(1.18)

Consider the allocation of M under the strategy profile σ′ = (σ′1, σ
′
2, . . . , σ

′
n). Be-

cause there are m copies of the good, there ought to be one player who, in expectation,

receives no more than m
n

copies. Without loss of generality, let him be player 1: that

is,
∑m

j=1 j ·MA
1,j(σ

′
1, . . . , σ

′
n) ≤ m

n
. Thus, by (1.18) and multiple applications of the

triangle inequality, we have
m∑
j=1

j ·MA
1,j(σ1, σ

′
−1) ≤ m

n
+ ε′m2 .

By averaging, there exists a pure strategy profile s = (s1, s−1) in the support of

(σ1, σ
′
−1) satisfying

m∑
j=1

j ·MA
1,j(s1, s−1) ≤ m

n
+ ε′m2 . (1.19)

Now let

K
def
= (K1, . . . , Kn), where Ki

def
=

{
K̃1 if i = 1

K̃ ′i if i = 2, . . . , n

θ
def
= (θ1, . . . , θn), where θi

def
=

{(
maxV, . . . ,maxV

)
if i = 1(

minW, . . . ,minW
)

if i = 2, . . . , n.

Because we know that (σ1, σ
′
−1) ∈ ∆(UD1(K1))× · · · ×∆(UDn(Kn)) from (1.18),

we deduce that s ∈ UD(K). It is also obvious that θ ∈ K and MSW(θ) = m ·maxV .

Next, we show that s, K, and θ satisfy the desired inequality of Theorem 1.14.

Indeed,

E
[
SW
(
θ,M(s)

)] (∗)
≤
(m
n

+ ε′m2
)
·maxV +

(
m− m

n
− ε′m2

)
·minW

= mmaxV −
(
m− m

n
− ε′m2

)
(maxV −minW)

≤ mmaxV −
(
m− m

n
− ε′m2

)
(2δ − ε

m
)

= MSW(θ)− 2δm
(
1− 1/n

)
+ 2δε′m2 +

ε

m

(
m− m

n
− ε′m2

)
35

≤ MSW(θ)− 2δm
(
1− 1/n

)
+ ε+ 2δε′m2 − ε

n
.

Above, inequality (∗) holds because, when θ is the true-valuation profile, the value

for each copy of the good is maxV for player 1, and is minW for every player other

than player 1. However, in the outcome M(s), owing to (1.19), in expectation player

1 can receive at most m
n

+ ε′m2 copies of the good.

Finally, noticing that ε′ > 0 can be arbitrarily small, we can choose ε′ to satisfy

2δε′m2 − ε
n
≤ 0. This implies that E

[
SW
(
θ,M(s)

)]
≤ MSW(θ)− 2δm

(
1− 1/n

)
+ ε.

Therefore, Theorem 1.14 holds. �

1.F The Set of Undominated Strategies is Non-

Empty

It is trivial to see that, no matter what candidate set Ki a player i may have, UDi(Ki)

is non-empty in the Vickrey mechanism. In fact, Theorem 1.8 implies that UDi(Ki)

includes at least all the valuations in Ki.

Below, we argue that UDi(Ki) is also always non-empty for all finite mechanisms.

Fact 1.19. Let M be a finite mechanism, i a player, and Ki a candidate set of i.

Then, UDi(Ki) 6= ∅.

Proof. Let Si = {s1, . . . , st} be the finite pure-strategy set of player i. We proceed by

contradiction. Suppose that every strategy in Si is (weakly) dominated, with respect

to Ki, by some strategy in ∆(Si). Then, in particular, s1 is dominated. Thus, there

exists a mixed strategy
∑t

k=1 αksk ∈ ∆(Si) such that

s1 ≺(i,Ki)

t∑
k=1

αksk , (1.20)

where α ∈ ∆
def
= {x ∈ [0, 1]t |

∑t
k=1 xk = 1}. Notice that, by condition (2) in

Definition 1.7, we cannot have s1 ≺(i,Ki)
s1. Therefore, we must have α1 < 1. Now,

we simplify (1.20) by subtracting α1s1 on both sides and rescaling:

s1 ≺(i,Ki)

t∑
k=2

αk
1− α1

sk . (1.21)

Next, since s2 is dominated, let it be dominated by
∑t

k=1 βksk. In symbols,

s2 ≺(i,Ki)

t∑
k=1

βksk (1.22)

for some β ∈ ∆. By substituting (1.21) into (1.22), we can rewrite (1.22) as

s2 ≺(i,Ki)

t∑
k=2

β′ksk (1.23)

36

for some β′ ∈ ∆ such that β′1 = 0. Again, by subtracting β′2s2 on both sides and

rescaling, we obtain

s2 ≺(i,Ki)

t∑
k=3

β′′ksk , (1.24)

for some β′′ ∈ ∆ such that β′′1 = β′′2 = 0. We substitute (1.24) into (1.21), and obtain

s1 ≺(i,Ki)

t∑
k=3

α′ksk ,

for some α′ ∈ ∆ such that α′1 = α′2 = 0.

This process, similar to Gaussian elimination in linear systems, can be continued

until we obtain sk ≺(i,Ki)
st for every k = 1, . . . , t−1. Thus, st must be an undominated

strategy for player i, contradicting the hypothesis that UDi(Ki) = ∅. �

1.G The Work of Lopomo, Rigotti, and Shannon
Their Model. In order to “strip away issues pertaining to higher order beliefs

and strategic uncertainty”, Lopomo, Rigotti, and Shannon [99] focus on single-player

mechanisms. Thus, so do we when recalling their work.

In their model, true state of the world comprises all the information the player is

uncertain about, and the player’s utility function, U , maps O × T × S to R, where

(a) O is the set of all possible outcomes,

(b) T
def
= [0, 1] is the set of all possible player types, and

(c) S is the set of all possible true states of the world.

When the player’s type is t ∈ T , the only information the player has about the true

state of the world s ∈ S is that s is drawn from a distribution Π(t) in ∆(S).

In their model, the player knows his own type t ∈ T , and a mechanism knows the

true state of the world s ∈ S. The player is allowed to report just his own type, and

then a mechanism chooses an outcome based not only on this report, but also on the

true state: that is, each mechanism φ is a function φ : T × S → O.

By contrast, in our auction setting, a mechanism chooses an outcome solely based

on the players’ reports. Indeed, since each player is uncertain about his own valuation,

the true state of the world should include the true valuation profile θ∗, and if a

mechanism knew θ∗, then it would be trivial to choose an outcome of maximum

social welfare.

In their Knightian setting, they provide a general notion of a dominant-strategy

mechanism, optimal incentive compatibility (optimal IC), and a very restrictive no-

tion of a dominant-strategy mechanism, ex-post incentive compatibility (ex-post IC).

Formally, a mechanism φ is

• optimal IC if, ∀t ∈ T , ∀σ ∈ ∆(T), and ∀π ∈ Π(t): Es∼π
[
U(φ(t, s), t, s)

]
≥

Es∼π
[
Eθ∼σ

[
U(φ(θ, s), t, s)

]]
, and

37

• ex-post IC if, ∀t, θ ∈ T and ∀s ∈ S: U(φ(t, s), t, s) ≥ U(φ(θ, s), t, s).

Their First Theorem. They assume that, for every type t ∈ T , there exists a

neighborhood N(t) ⊂ T such that, for all continuous functions g : S → R,

if

∫
S

g(s)dπ = 0 for every π ∈
⋂

t′∈N(t)

Π(t′), then g = 0.

Under this assumption, their first theorem shows that every optimal IC mechanism

satisfying an additional technical condition (i.e., ex-post cyclical monotonicity) must

be ex-post IC.

Therefore, their first theorem has the same spirit of our Theorem 1.6. In both the-

orems, some form of overlapping of a player’s possible ‘belief/knowledge sets’ implies

that every dominant-strategy mechanism must be of a very restrictive form. However,

due to the differences in models and assumptions, it is unclear whether our already

simple proof of Theorem 1.6 can be more simply derived from theirs. Even ignoring

all other differences, there cannot be any subjective map from their type space to

ours. In their case, a player’s type space (i.e., T = [0, 1]) has the cardinality of the

continuum. In our case, the type space of a given player i (i.e., Ki) may have the

cardinality of the power set of the continuum.

38

Chapter 2

Knightian Self Uncertainty in the

VCG Mechanism for

Unrestricted Combinatorial

Auctions

This chapter is based on the result published in [43].

We study the social welfare performance of the VCG mechanism in the well-known

and challenging model of self uncertainty initially put forward by Frank H. Knight

and later formalized by Truman F. Bewley. Namely, the only information that each

player i has about his own true valuation consists of a set of distributions, from one

of which i’s valuation has been drawn.

We assume that each player knows his true valuation up to an additive inaccuracy

δ, and study the social welfare performance of the VCG mechanism relative to δ > 0.

In this paper, we focus on the social welfare performance of the VCG mechanism

in unrestricted combinatorial auctions,1 both in undominated strategies and regret-

minimizing strategies. Denote by MSW the maximum social welfare.

Our first theorem proves that, in an n-player m-good combinatorial auction, the

VCG mechanism may produce outcomes whose social welfare is ≤ MSW − Ω(2mδ),

even when n = 2 and each player chooses an undominated strategy. We also geomet-

rically characterize the set of undominated strategies in this setting.

Our second theorem shows that the VCG mechanism performs well in regret-

minimizing strategies : the guaranteed social welfare is ≥ MSW − 2 min{m,n}δ if

1We acknowledge that the VCG mechanism admits computational-complexity issues [37, 57]; in
this paper we choose to focus on how the Knightian players rationally behave in VCG ignoring such
complexity issues. It turns out this is already a very non-trivial question to tackle, not to say that in
practice it is also interesting to study the VCG mechanism on selling 10 goods to 10 players, which
is computationally tractable on a modern PC.

39

each player chooses a pure regret-minimizing strategy, and ≥ MSW−O(n2δ) if mixed

strategies are allowed.

2.1 Introduction

2.1.1 Theorem 2.1: VCG Auction in Undominated Strate-

gies

In an (unrestricted) combinatorial auction of n players andm goods, the set of possible

allocations A consists of all possible partitions of [m] (the set of m goods) into 1 + n

subsets (A0, A1, . . . , An), where A0 is the (possibly empty) set of unassigned goods

and Ai is the (possibly empty) set of goods assigned to player i. Given an allocation

A = (A0, A1, . . . , An), player i has valuation θ∗i (Ai) ∈ R≥0 if Ai 6= ∅ and 0 if Ai = ∅.2

In a Knightian (unrestricted) combinatorial auction, the only information i has

about the true valuation profile θ∗i lies in Ki. Letting Ki(S) := {θi(S)}θi∈Ki , we say

that Ki is δ-approximate if supKi(S)− inf Ki(S) ≤ δ for all non-empty S ⊆ [m]. We

prove that,

Theorem 2.1 (Informal). In a δ-approximate combinatorial Knightian auction with

n ≥ 2 players and m goods, the VCG cannot, in undominated strategies, guarantee

social welfare greater than MSW − (2m+1 − 5)δ.

(The formal statement and proof of Theorem 2.1 can be found in Section 2.4.)

In fact, in this case we have been able to characterize UDi, the set undominated

strategies of a player i. This time, UDi is much larger than Ki. Player i may choose

an (almost arbitrary) constant fraction of the coordinates S ⊆ 2[m], and deviate from

Ki(S) by an additive factor as large as Θ(2mδ) for all S ∈ S. This strategy remains

undominated for player i!

Perhaps more surprisingly, characterizing the undominated strategies of the VCG

in unrestricted combinatorial auctions is much harder. Indeed, even describing the

resulting set UDi is challenging. (Indeed, we resort to geometry in order to describe

it in a succinct way.)

Theorem 2.1 is somewhat disconcerting, if we feel that the VCG should always be

the mechanism of choice for getting good social welfare, even when the players are

Knightian, and even when the players are belief-free. But there are other solution

concepts to consider.

2All of our results for combinatorial auctions actually also hold even under a mild restriction
on the players’ valuation, namely, when they are set-monotone (or with free disposal): that is,
θi(S) ≤ θi(T) whenever S ⊆ T .

40

2.1.2 Theorem 2.2: VCG Auctions in Regret-Minimizing Strate-

gies

So far we have analyzed the VCG under all solution concepts traditionally used in

private-value and belief-free auctions of incomplete information, assuming that the

players are utility maximizers. We now analyze the VCG’s performance in Knightian

auctions in regret-minimizing strategies. The notion of a regret-minimizing strategy

naturally extends to the Knightian setting. Informally, the regret of a strategy si of

a player i is the maximum difference, taken over all possible strategy choices of i’s

opponents and all possible choices of θi in Ki, between the utility i gets by playing

si and the utility he gets by best responding to those choices. A regret-minimizing

player i chooses strategies that minimize his regret.

With respect to pure regret-minimizing strategies, we prove the following

Theorem 2.2 (Informal). In a δ-approximate combinatorial Knightian auction with

n players and m goods, the VCG guarantees social welfare ≥ MSW − 2 min{n,m}δ
in pure regret-minimizing strategies.

(We prove Theorem 2.2 in Section 2.5.)

That is, in combinatorial Knightian auctions, the performance of the VCG in

(pure) regret minimizing strategies is absolutely stellar. Theorem 2.2 is less intuitive

than it seems, because in a combinatorial, Knightian, VCG auction it is not obvious

which strategies are regret-minimizing. Consider a player i who (1) happens to know

that his true valuation for some subset of the good S lies in some interval [xS, xS +δ],

and (2) chooses to play a pure, regret-minimizing strategy vi. At first glance, it

would appear that vi(S) should coincide with the center of the interval, that is,

vi(S) = xS + δ/2. In reality, however, vi(S) need not even belong to the interval

[xS, xS + δ]. Nevertheless, we prove that it cannot lie too far from the interval.

Mixed Strategies. For simplicity, Theorem 2.2 has been stated for pure strategies.

Indeed, as shown in Appendix 2.D.1, significant difficulties arise when dealing with

mixed strategies. For instance, we must deal with the fact that a regret-minimizing

mixed strategy can, in expectation and for each subset S, be arbitrarily far away

from K(S)! However, Theorem 2.2 essentially continues to hold when allowing mixed

strategies, but with a worse bound. Roughly, min{n,m} is replaced by n2 (or even

n log n if the valuations are set-monotone).3

3That is, vi(S) ≤ vi(T) for all S ⊆ T ⊆ [m], all i, and all vi ∈ Θi. The interested reader can
consult Appendix 2.D for the mixed-strategy version of Theorem 2.2.

41

2.1.3 The Meaningfulness of Theorem 2.2 and a Rationality

Bridge Lemma

In principle, Theorem 2.2 or any other implementation in regret-minimizing strategies

would be irrelevant, in the exact-valuation or in the Knightian setting, if at least

one player is not a regret minimizer but a utility maximizer. However, we show

that a separate lemma relating these two basic models of rationality in all games

(with or without Knightian players), indicates that Theorem 2.2 may retain some

meaningfulness. Let us explain.

• A utility-maximizing player U eliminates all his dominated strategies to compute

his set of undominated ones, UD. Notice that U cannot further refine UD based

on utility maximization alone. If UD consists of a single strategy s (necessarily

a dominant one), then U of course chooses s. But:

if UD contains multiple strategies, which ones might U prefer?

• A regret-minimizing player R eliminates all his non regret-minimizing strategies

so as to compute his set of regret-minimizing strategies, RM. He might even

continue this process k times, until he is satisfied or no further elimination is

possible. Let us denote the final set of strategies he obtains this way by RMk. If

RMk consists of a single strategy s, he of course chooses s. But:

if RMk contains multiple strategies, which ones might R prefer?

A possible answer is that, when he is no longer able to apply his ‘favorite way of

reasoning’, even a die-hard utility maximizer U will resort to regret minimization to

refine UD, and even a die-hard regret minimizer R will resort to utility maximization

to refine RMk. In principle, the two final sets of strategies obtained by such different

refinement procedures could be vastly different. Our mentioned lemma, however,

guarantees that they coincide.

Abusing notation a bit, consider UD and RM also to be ‘operators’ acting on sets

of strategies. In this case UD(UD) = UD, while RM2 def
= RM(RM) may be a strict

subset of RM. Then, our structural lemma can be expressed as follows.

Lemma 2.3 (Rationality Bridge Lemma, proved in Chapter 3).

The set of strategies obtained after applying, in arbitrary order, k times the oper-

ator RM and at least once the operator UD coincides with RMk ∩ UD.

For instance, RM(RM(UD(RM(RM(UD))))) = RM4(UD) = RM4 ∩ UD.

A formal statement and proof of the above lemma can be found in Appendix 3.2.

Here we wish just to mention the following implication for mechanism design:

For all mechanisms M and social choice correspondences f ,

if M implements f in RM strategies or in UD strategies,

42

then M is automatically guaranteed to implement f also in RM(UD) strategies.4

Relative to the VCG, this guarantee implies that Theorem 2.2 continues to hold in

RM(UD) strategies. That is, assuming that the players consider solely pure strategies,

Corollary 2.4. In a δ-approximate combinatorial Knightian auction with n players

and m goods, the VCG guarantees social welfare ≥ MSW − 2 min{n,m}δ (not only

when the players are regret minimizers, but also) when the players are utility maxi-

mizers who use regret only to break ties.

(A similar corollary holds for the mentioned mixed-strategy version of Theorem 2.2.)

2.1.4 In Sum

The fact that the VCG is no longer dominant-strategy in Knightian auctions is ‘no

big loss’. Indeed, no dominant strategy mechanism can do better than assigning the

goods at random, even in single-good auctions.

The fact that the VCG has excellent, and indeed essentially optimal, social-welfare

performance in undominated strategies in multi-unit (and thus also in single-good)

Knightian auctions demonstrates the wide relevance of the VCG.

The fact that the social-welfare performance of the VCG in combinatorial Knigh-

tian auctions is extremely poor in undominated strategies is just another hard fact of

life. However, per the Rationality Bridging Lemma, once we assume that even die-

hard utility maximizers resort to regret minimization when they are forced to break

ties, then the VCG continues to be the mechanism of choice for good social welfare,

even in the Knightian setting and in unrestricted combinatorial auctions.

In sum, as most things classical, the VCG outlives the confines in which it was

conceived, and continues to be relevant in new and unforeseen settings.

2.1.5 Roadmap

We discuss the related work in Section 2.2, and provide basic definitions in Section 2.3.

The proof of Theorem 2.1 is very technically involved, so we divide it into four

sections. In Section 2.4 we sketch a two-paged proof of a weaker form of Theorem 2.1

to gain intuition. In Appendix 2.A, we state the stronger version of Theorem 2.1 that

also includes the geometric characterization of the player’s undominated strategies.

The full proof is contained in Appendix 2.B and 2.C.

We provide the full proof of the pure strategy version of Theorem 2.2 in Section 2.5,

and in Appendix 2.D, we state and prove the mixed-strategy version of Theorem 2.2.

The proof of our structural lemma can be found in Appendix 3.2.

4Indeed, for i = 1 the bridging lemma implies that RM(UD) = RM ∩ UD ⊆ RM. Of course, to
enforce the same guarantee one could just demand that M implements f in RM∪UD strategies, but
this is a very strong demand. Indeed RM ∪ UD could be a much larger set than RM ∩ UD.

43

2.2 Related Work

Models of Type Uncertainty. The Knightian model was originally proposed by

Knight [91] and formalized by Bewley [30].

Knightian players have received much attention in decision theory. In particular,

Aumann [14], Dubra, Maccheroni and Ok [55], Ok [124], and Nascimento [112] inves-

tigate decision with incomplete orders of preferences. Various criteria for selecting

a single distribution out of a set of distributions have been studied by Danan [49],

Schmeidler [139], Gilboa and Schmeidler [70]. (In fact, Bose, Ozdenoren and Pape [34]

and Bodoh-Creed [33] use the model from [70] to study auctions.)

General equilibrium models with incompletely ordered preferences have been con-

sidered by Mas-Colell [105], Gale and Mas-Colell [67], Shafer and Sonnenschein [141],

and Fon and Otani [64]. More recently, Rigotti and Shannon [135] characterize the

set of equilibria in a financial market problem.5

Single-player mechanisms, in the Knightian model, for the rent-extraction prob-

lem have been studied by Lopomo, Rigotti, and Shannon [99], under two notions of

implementation. Namely, (1) when reporting the truth is at least as good as any

other strategy, and (2) when reporting the truth is not strictly eliminated in favor of

another strategy.6

Although they are quite different from the Knightian model, a few other models of

player uncertainty should be mentioned. For instance, Milgrom [108], in single-good

auctions, studies the revenue difference between second-price and English auctions,

when the players do not exactly know their own valuations, but only that they are

drawn from a common distribution. Sandholm [137] presents an example of an auction

(with a non quasi-linear utility function) where a player’s valuation is drawn from the

uniform distribution over [0, 1], and argues that reporting the expected valuation (i.e.,

0.5) is no longer dominant-strategy. Mechanisms for scheduling, when each player

knows a single distribution where his type is drawn, have been studied by Porter,

Ronen, Shoham and Tennenholtz [132], and by Feige and Tennenholtz [60]. Thompson

and Leyton-Brown [157] provide an extensive summary of works on Bayesian self-

uncertainties.

Undominated Strategies. Implementations in undominated strategies trace back

to Jackson [79, 80]. Although being a well-known solution concept, very few pos-

itive results on mechanism design have been achieved so far. Beyond the positive

example in [79], Babaioff et al. [21] provide an efficient mechanism for single-value

multi-minded auctions, and Abreu and Matsushima [3] achieve perfect revenue in the

5A strategy profile is an equilibrium if no player can deviate and strictly benefit no matter which
distribution is picked from his set. Notice that such an equilibrium is not a notion of dominance.

6Notice that, not envisaging other players, these are not notions of dominance in the Knightian
setting. Indeed, even in the exact-valuation setting, the notion of dominance should take into account
all possible choices of strategies of the other players.

44

complete information setting. Our prior work on the Knightian mechanism design is

another example [42].

Regret-Minimizing Strategies. Regret-minimizing strategies are also known as

regret-minimax strategies. The suggestion of adopting regret-minimizing (a.k.a. regret-

minimax) strategies traces back to Savage’s reading [138] of the work of Wald [161],

and has been axiomatized by Milnor [109]. The notion of regret has been treated dif-

ferently in different settings. A unified axiomatic characterization of minimax regret

has been recently given by Stoye [155].

Mechanisms have also been studied under minimax regret. Linhart and Rad-

ner [98] study minimax-regret strategies in a sealed-bid mechanism for bilateral bar-

gaining under complete information. Engelbrecht-Wiggans [58] and Selten [140] ana-

lyze first- and second-price sealed-bid auctions by incorporating regret for the bidders.

In more general settings, minimax-regret strategies are mostly studied when a player

has (Bayesian or set-theoretic) beliefs about his opponents. In particular, Hyafil and

Boutilier [76] and Renou and Schlag [134] study two different notions of minimax-

regret equilibrium, both coinciding with ours when players do not form beliefs about

their opponents. Halpern and Pass [71] propose the solution concept of iterated regret

minimization using beliefs.

Regret Minimizers vs. Utility Maximizers. Many empirical studies compare

utility maximizers and regret minimizers, see for instance Chorus, Arentze and Tim-

mermans [45], and Hensher, Greene and Chorus [75]. Recently, Engelbrecht-Wiggans

and Katok [59] and Filiz and Ozbay [62] provide experimental evidence for regret in

first- and second-price auctions. To the best of our knowledge, we are the first to

study players who use regret for refining their sets of undominated strategies.

2.3 Classical and Knightian Basic Notions

Recall that, in an auction, the set of possible outcomes is Ω
def
= A × Rn

≥0, where A
denotes the set of all possible allocations of the good(s). If (A,P) ∈ Ω, we refer to

A, A = (A0, A1, . . . , An), as the realized allocation, to each Pi as the price charged to

player i, to each Ai as the allocation of player i, and to A0 as the unallocated good(s).

A valuation θi of a player i is a function, from i’s possible allocations to non-negative

reals, mapping the empty allocation to 0. The set of all possible valuations for a

player i is denoted by Θi, and i’s true valuation by θ∗i . We assume quasi-linear utility

functions. That is, the utility function Ui of a player i maps a valuation θi and an

outcome ω = (A,P) to Ui(θi, ω)
def
= θi(Ai)− Pi.

As already said, in a Knightian auction the only information that a player i has

about θ∗i —and the entire profile θ∗— consists of a subset Ki ⊂ Θi, the candidate

(valuation) set, guaranteed to contain θ∗i . A player i has no information or belief about

θ∗−i or K−i of his opponents. The true valuations of the players are uncorrelated.

45

By saying that K is a profile —respectively, a product— of candidate sets, we

mean that K = (K1, . . . , Kn) —respectively, that K = K1 × · · · ×Kn.

Let us now clarify the specific auctions we consider.

δ-approximate Knightian Auctions. Recall that, in an (unrestricted) com-

binatorial auction, there are n players and m distinct goods. The set of possi-

ble allocations A consists of all possible partitions A of [m] into 1 + n subsets,

A = (A0, A1, . . . , An), where A0 is the (possibly empty) set of unassigned goods

and Ai is the (possibly empty) set of goods assigned to player i. For each player i,

Θi = {θi : 2[m] → R≥0 | θi(∅) = 0}.
In an (unrestricted) combinatorial Knightian auction, a player i’s candidate set

Ki is a subset of the above Θi. If S ⊂ [m], then we let Ki(S)
def
= {θi(S) | θi ∈ Ki}.

We say that Ki is δ-approximate if supKi(S)− inf Ki(S) ≤ δ for all S ⊆ [m].

A Knightian auction is δ-approximate if each candidate set Ki is δ-approximate.

(Possibly Incomplete) Preferences. In a Knightian auction, a utility-maximizing

player i with candidate set Ki strictly prefers an outcome ω to an outcome ω′ if and

only if the following two conditions hold:

(1) Ui(θi, ω) ≥ Ui(θi, ω
′) for all θi ∈ Ki and

(2) Ui(θ
′
i, ω) > Ui(θ

′
i, ω
′) for some θ′i ∈ Ki.

Social welfare. The social welfare of an allocation A, SW(A), is defined to be∑
i θ
∗
i (Ai); and the maximum social welfare, MSW, is defined to be maxA∈A SW(A).

(That is, social welfare and maximum social welfare continue to be defined relative

to the players’ true valuations θ∗i , whether or not the players know them exactly.)

More generally, the social welfare of an allocation A relative to a valuation profile

θ, SW(θ, A), is
∑

i θi(Ai); and the maximum social welfare relative to θ, MSW(θ), is

maxA∈A SW(θ, A). Thus, SW(A) = SW(θ∗, A) and MSW = MSW(θ∗).

The VCG mechanism. In our auctions, the VCG mechanism (with any tie-

breaking rule) maps a profile of valuations θ ∈ Θ1 × · · · ×Θn, to an outcome (A,P),

where

A ∈ arg maxA∈A SW(θ, A) and, for each player i, Pi = MSW(θ−i)−
∑

j 6=i θ(Ai).

General mechanisms and strategies. Every auction mechanism M considered

in this paper specifies, for each player i, a set Si. We interchangeably refer to each

member of Si as a pure strategy/action/report of i, and similarly, a member of ∆(Si)

a mixed strategy/action/report of i.7 After each player i, simultaneously with his

opponents, reports a strategy si in Si, M maps the reported strategy profile s to an

7Often, in pre-Bayesian settings, the notion of a strategy and that of an action are distinct.
Indeed, a strategy si of a player i maps the set of all possible types of i to the set of i’ possible
actions/reports. But since strategies are universally quantified in all relevant definitions of this paper,
we have no need to separate (and for simplicity refrain from separating) the notions of strategies
and actions.

46

outcome M(s) ∈ Ω. If M is probabilistic, then M(s) ∈ ∆(Ω), and, for each player i,

Ui(θi,M(s))
def
= Eω∼M(s)[Ui(θi, ω)].

Note that Si = Θi in the VCG case, but in general the set Si is arbitrary.

Knightian undominated strategies. Given a mechanism M , a pure strategy si of

a player i with a candidate set Ki is (weakly) undominated,8 in symbols si ∈ UDi(Ki),

if i does not have another (possibly mixed) strategy σi such that

(1) ∀s−i ∀θi ∈ Ki Ui
(
θi,M(σi, s−i)

)
≥ Ui

(
θi,M(si, s−i)

)
, and

(2) ∃s−i ∃θi ∈ Ki Ui
(
θi,M(σi, s−i)

)
> Ui

(
θi,M(si, s−i)

)
.

If K is a product/profile of candidate sets, then UD(K)
def
= UD1(K1)×· · ·×UDn(Kn).9

Knightian regret-minimizing strategies. Given a mechanism M , the (maxi-

mum) regret of a pure strategy si of a player i with candidate set Ki is

Ri(Ki, si)
def
= max

θi∈Ki
max
s−i

(
max
s′i

Ui
(
θi,M(s′i, s−i)

)
− Ui

(
θi,M(si, s−i)

))
.

A pure strategy si is regret-minimizing among all pure strategies of a player i with

a candidate set Ki, in symbols si ∈ RMpure
i (Ki), if Ri(Ki, si) ≥ Ri(Ki, s

′
i) for all other

pure strategies s′i of i. We let RMpure(K)
def
= RMpure

1 (K1)× · · · × RMpure
n (Kn).

When allowing mixed strategies, the (expected) regret of a (possibly mixed) strat-

egy σi of a player i with candidate set Ki is

Ri(Ki, σi)
def
= max

θi∈Ki
max
s−i

(
max
s′i

Ui
(
θi,M(s′i, s−i)

)
− Esi∼σiUi

(
θi,M(si, s−i)

))
.

We similarly define RMmix
i (Ki) as the set of strategies of a player i that minimize

regret among all mixed strategies, and let RMmix(K)
def
= RMmix

1 (K1)×· · ·×RMmix
n (Kn).

2.4 A Weaker Version of Theorem 2.1

It suffices to consider the case where there are n = 2 players, because all players other

than players 1 and 2 can be made to report 0 on every subset of the goods, and thus not

affect the choice of outcome. We now sketch the proof for the following slightly weaker

version of Theorem 2.1. (We shall discuss in Appendix 2.A the stronger statement of

our theorem as well as a characterization of a player’s undominated strategies.)

8This is not to be confused with the strong dominance that requires the inequality to be strict
for all pairs (s−i, θi). For this notion in the exact-valuation case, see for instance [66, 95].

9As pointed out by Jackson [79] in the exact-valuation case, the general notion of an undominated
strategy is more complex. However, for bounded mechanisms, the simpler notion above coincides
with the general notion, even in the Knightian setting. Since this class of mechanisms includes the
VCG and all finite mechanisms, we adopt this simpler notion for this paper.

47

Theorem 2.1’. In a combinatorial Knightian auction with 2 players and m goods,

consider the VCG with any tie-breaking rule, then there exist products of δ-approximate

candidate sets K = K1 ×K2 and profiles (v1, v2) ∈ UD(K), such that

(best-case θ) ∀θ ∈ K1 ×K2 SW
(
θ,VCG(v1, v2)

)
≤ MSW(θ)− (2m − 3)δ (2.1)

(worst-case θ) ∃θ ∈ K1 ×K2 SW
(
θ,VCG(v1, v2)

)
≤ MSW(θ)− (2m − 1)δ. (2.2)

Proof Sketch. Let π1, . . . , π2m−1 be any permutation of all non-empty subsets of [m]

such that, whenever j < k, πj 6⊇ πk.
10 We set π2m

def
= π1, and denote by S the

complement of a subset S: that is, S
def
= [m] \ S.

We begin by choosing a highly-deviating strategy for player 1, and argue that it

is undominated. Specifically, choose arbitrarily a real number x larger than δ, and

then choose a candidate set K1 and a strategy (i.e., a valuation) v1 as follows:

K1
def
=
{
θ1 ∈ Θ1

∣∣∣ ∀ non-empty S ⊆ [m], θ1(S) ∈ [x− δ/2, x+ δ/2]
}

and

v1(πi)
def
= x+ (i− 1)δ ∀i ∈ {1, . . . , 2m − 1} .

Note that v1 6∈ K1. (Indeed, v1(πi) ∈ K1(π1) only for i = 1.)

We now prove that the strategy v1 is undominated. More precisely,

Claim 2.5. v1 ∈ UD1(K1).

Proof. We proceed by contradiction. Assume towards contradiction that v1 is weakly

dominated by a strategy v′1 6= v1. (There are two cases to consider: v′1 is pure and v′i
is mixed. For simplicity we analyze only the first one.) Assume that v′1 is pure.

(There are two cases to consider: either v′i is a constant shift of vi or it is not. For

brevity, we analyze only the second, harder, case.) Assume that v′i is not a constant

shift of vi. Then

∃j ∈ {1, . . . , 2m − 1} ∃∆ > 0 v1(πj+1)− v1(πj) > ∆ > max
T⊆πj+1

v′1(T)−max
T⊆πj

v′1(T) .

(2.3)

Else, that is, if for all i ∈ {1, . . . , 2m − 1}
v1(πi+1)− v1(πi) ≤ max

T⊆πi+1

v′1(T)−max
T⊆πi

v′1(T),

then summing up all these 2m−1 inequalities we get 0 ≤ 0; hence, all the inequalities

are in fact tight. So there must exist some constant c such that v1(πi) = v′1(πi) + c

for i ∈ {1, . . . , 2m − 1}, which we have assumed not to be the case.

(There are now two more cases to consider: j 6∈ {2m − 2, 2m − 1} and j ∈ {2m −
2, 2m − 1}. For brevity we analyze only the first, hard, one.) Assume that j 6∈
{2m − 2, 2m − 1}. In this case neither πj nor πj+1 is empty.

10In particular, we can order the subsets of [m] by increasing cardinality, and lexicographically
within a given cardinality: that is, when m = 3, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

48

We contradict the assumption that v′1 weakly dominates v1 by exhibiting a valu-

ation θ1 ∈ K1 and a “witness” strategy v2 for player 2 such that

U1(θ1,VCG(v1, v2)) > U1(θ1,VCG(v′1, v2)) .

We define v2 as follows. Let H be a huge number (e.g., much higher than v1(π)

and v′1(π) for any subset π of the goods) and let v2(πj+1) = H −∆, v2(πj) = H, and

v2(T) = 0 for all other subsets T . (Here we rely on the combinatorial nature of the

auction: we have complete freedom on how to choose the valuation v2.)

We now argue that the allocation in the outcome VCG(v1, v2) is (πj+1, πj+1) and

player 1’s price is ∆. Indeed, because H was chosen to be sufficiently large, the only

outcomes we should consider are (T, πj+1) and (T ′, πj) where T ⊆ πj+1 and T ′ ⊆ πj.

By construction πj+1 maximizes v1(T) among all T ⊆ πj+1, and πj maximizes v1(T)

among all T ⊆ πj; in particular, the only two possible allocations are (πj, πj) and

(πj+1, πj+1). Because v1(πj+1)− v1(πj) > ∆ = v2(πj)− v2(πj+1), the outcome that is

chosen is (πj+1, πj+1). As for the price: player 2 is allocated πj+1 but, if player 1 did

not exist, player 2 would be allocated πj, and gain ∆ in utility; thus player 1’s price

is indeed ∆.

Next, we argue that the allocation in the outcome VCG(v′1, v2) is (T ∗, πj), where

T ∗ maximizes v′1(T) among all T ⊆ πj, and player 1’s price is 0. As before, because H

was chosen to be sufficiently large, the only outcomes we should consider are (T, πj+1)

and (T ′, πj) where T ⊆ πj+1 and T ′ ⊆ πj. This time by relying on the fact that

v2(πj)− v2(πj+1) = ∆ > max
T⊆πj+1

v′1(T)−max
T⊆πj

v′1(T)

we deduce that the outcome is in fact (T ∗, πj). As for the price: player 2 is allocated

πj and, if player 1 did not exist, player 2 would still be allocated πj; thus player 1’s

price is indeed 0.

We now define θ1 ∈ K1 as follows: θ1(πj+1) = x + δ/2, θ1(πj) = x − δ/2, and

θ1(π) is arbitrarily chosen for all other subsets π. For our choices of θ1, v1, v
′
1 and v2

we have:

U1(θ1,VCG(v1, v2)) = (x+ δ/2)−∆

U1(θ1,VCG(v′1, v2)) = (x− δ/2)− 0 .

By (2.3) and the construction of v1, it is immediately seen that δ = v1(πj+1)−v1(πj) >

∆. Thus the first utility is greater than the second one, contradicting the fact that

v′1 weakly dominates v1. �

Having constructed v1 ∈ UD1(K1), we continue the proof of Theorem 2.1’ by

letting:

v2(S)
def
=

{
(2m − i− 1.5)δ if S = πi for some i ∈ {1, . . . , 2m − 2}
x+ (2m − 2.5)δ if S = [m]

,

K2
def
=
{
θ2 ∈ Θ2

∣∣∣ ∀i ∈ {1, . . . , 2m − 1}, θ2(πi) ∈
[
v2(πi), v2(πi) + δ

]}
.

49

Note that, by construction, v2 ∈ K2, which easily implies the following

Claim 2.6. v2 ∈ UD2(K2). (For brevity we do not prove this implication.)

Having specified K1, v1, K2, and v2, all we have left is analyzing the social welfare

performance.

Let us first compute the allocation of the outcome VCG(v1, v2). The only al-

locations to consider are (π2m−1,∅), (∅, π2m−1), and (πi, πi), for some index i ∈
{1, . . . , 2m − 2}. (In principle, one may also consider allocations where some goods

remain unallocated. However, since v1 and v2 are strictly monotone —that is, vj(S) <

vj(T) for all S (T and all j ∈ {1, 2}— all goods must be allocated in the outcome

of VCG(v1, v2).)

Now we compare the social welfare relative to (v1, v2) for such allocations:

v1(π2m−1) + v2(∅) = (x+ (2m − 2)δ) + 0 = x+ (2m − 2)δ ,

v1(∅) + v2(π2m−1) = 0 + (x+ (2m − 2.5)δ) = x+ (2m − 2.5)δ , and

v1(πi) + v2(πi) = (x+ (i− 1)δ) + (2m − i− 1.5)δ = x+ (2m − 2.5)δ .

Thus, in the outcome VCG(v1, v2) the allocation is (π2m−1,∅). Hence, the social

welfare is

SW
(
(θ1, θ2),VCG(v1, v2)

)
= θ1(π2m−1) .

On the other hand, the maximum social welfare is

MSW(θ1, θ2) ≥ θ2(π2m−1) .

Now notice that for all θ ∈ K, we have

MSW(θ)− SW
(
θ,VCG(v1, v2)

)
≥ θ2(π2m−1)− θ1(π2m−1)

≥ (x+ (2m − 2.5)δ)− (x+ δ/2) = (2m − 3)δ .

That is, (2.1) holds. To prove (2.2), we choose θ as follows:

θ1(πi)
def
= x− δ/2 ∀ i ∈ {1, . . . , 2m − 1} ,

θ2(πi)
def
= v2(πi) + δ ∀ i ∈ {1, . . . , 2m − 1} .

Now notice that

MSW(θ)− SW
(
θ,VCG(v1, v2)

)
≥ θ2(π2m−1)− θ1(π2m−1)

= (x+ (2m − 1.5)δ)− (x− δ/2) = (2m − 1)δ .

That is, (2.2) also holds. This concludes our proof sketch of the weaker version of

Theorem 2.1. �

2.5 Proof of Theorem 2.2

50

Theorem 2.2. In a combinatorial Knightian auction with n players and m goods,

let the VCG mechanism break ties by preferring subsets with smaller cardinali-

ties.11Then, for all δ, all products K of δ-approximate candidate sets, all profiles

θ ∈ K, and all profiles of strategies v ∈ RMpure(K),

SW(θ,VCG(v)) ≥ MSW(θ)− 2 min{m,n}δ .

Proof. We begin by noting that, because the VCG is dominant-strategy-truthful in

the exact-valuation model, the (maximum) regret of a pure strategy vi of a player i

with candidate set Ki in the VCG mechanism becomes

Ri(Ki, vi)
def
= max

θi∈Ki
max
v−i

(
max
v′i

Ui
(
θi,VCG(v′i, v−i)

)
− Ui

(
θi,VCG(vi, v−i)

))
= max

θi∈Ki
max
v−i

(
Ui
(
θi,VCG(θi, v−i)

)
− Ui

(
θi,VCG(vi, v−i)

))
,

Moreover, by the very definition of the VCG, we have

Ui
(
θi,VCG(vi, v−i)

)
= SW

(
(θi, v−i),VCG(vi, v−i)

)
−MSW(v−i) .12

Therefore in the VCG case, we can further simplify the definition of regret as follows:

Ri(Ki, vi) = max
θi∈Ki

max
v−i

(
SW
(
(θi, v−i),VCG(θi, v−i)

)
− SW

(
(θi, v−i),VCG(vi, v−i)

))
= max

θi∈Ki
max
v−i

(
MSW

(
θi, v−i

)
− SW

(
(θi, v−i),VCG(vi, v−i)

))
. (2.4)

Let us adopt a notation analogous to that of the proof in Chapter 1. Namely, for

each player i, each candidate set Ki ⊂ Θi, and each subset T ⊆ [m], we let

Ki(T)
def
= {θi(T)}θi∈Ki , K⊥i (T)

def
= inf Ki(T),

K>i (T)
def
= supKi(T), Kmid

i (T)
def
= (K⊥i (T) +K>i (T))/2 .

To prove Theorem 2.2, we rely on two intermediate claims. The first one identifies,

for every player i, a strategy vi with regret no larger than δ.

Claim 2.7. For every player i, let v∗i (T)
def
= Kmid

i (T) for each T ⊆ [M]. Then

Ri(Ki, v
∗
i) ≤ δ.

Proof of Claim 2.7. According to the first equality of (2.4), it suffices to show that

∀θi ∈ Ki ∀v−i, SW
(
(θi, v−i),VCG(θi, v−i)

)
− SW

(
(θi, v−i),VCG(v∗i , v−i)

)
≤ δ .

Let ω1 = VCG(θi, v−i) and ω2 = VCG(v∗i , v−i).

Recall that, in a combinatorial auction, a valuation θi ∈ Θi of player i maps

subsets of [m] to R≥0. For convenience, we extend θi to map an outcome ω = (A,P)

to R≥0 as follows: θi(ω)
def
= θi(Ai).

11If giving subsets A or B (A to player i provides the same social welfare, then the VCG will
give B to player i.

12This is because, suppose that the VCG mechanism picks an outcome ω = VCG(vi, v−i), allocating
player i subset Ai and others A−i. Then, i’s price is MSW(v−i) − v−i(A−i) in ω. This induces a
total utility of θi(Ai) + v−i(A−i)−MSW(v−i) = SW((θi, v−i), ω)−MSW(v−i).

51

Under this notation, we have v∗i (ω2) + v−i(ω2) ≥ v∗i (ω1) + v−i(ω1), because the

VCG maximizes social welfare relative to the strategy profile (v∗i , v−i). Using this

inequality, we deduce that

SW
(
(θi, v−i),VCG(θi, v−i)

)
− SW

(
(θi, v−i),VCG(v∗i , v−i)

)
=
(
θi(ω1) + v−i(ω1)

)
−
(
θi(ω2) + v−i(ω2)

)
=
(
θi(ω1)− θi(ω2)

)
+
(
v−i(ω1)− v−i(ω2)

)
≤
(
θi(ω1)− θi(ω2)

)
+
(
v∗i (ω2)− v∗i (ω1)

)
.

Suppose player i gets subset T1 ⊆ [M] in outcome ω1, and subset T2 ⊆ [M] in outcome

ω2. Then(
θi(ω1)− θi(ω2)

)
+
(
v∗i (ω2)− v∗i (ω1)

)
=
(
θi(T1)− v∗i (T1)

)
+
(
v∗i (T2)− θi(T2)

)
≤ K>i (T1)−Kmid

i (T1) +Kmid

i (T2)−K⊥i (T2)

≤ δ

2
+
δ

2
= δ . �

Let us now prove another claim.

Claim 2.8. Let vi be any strategy of player i such that Ri(Ki, vi) ≤ δ. Then:

(a) for every T ⊆ [M]:

Kmid

i (T)−max
T ′⊆T

vi(T
′) ≤ δ − K>i (T)−K⊥i (T)

2
, and

(b) for every T ⊆ [M] such that vi(T) > vi(T
′) for all T ′ (T :

|vi(T)−Kmid

i (T)| ≤ δ − K>i (T)−K⊥i (T)

2
.

Proof. Since the case of T = ∅ is trivial, we assume below that T 6= ∅. We first

prove part (a).

Suppose that (a) is not true. Then, there exists T such that

Kmid

i (T)−max
T ′⊆T

vi(T
′) > δ − K>i (T)−K⊥i (T)

2
. (2.5)

We contradict our assumption on vi by showing that Ri(Ki, vi) > δ.

To show Ri(Ki, vi) > δ, as per (2.4), we must find some v−i and some θi so that

MSW
(
θi, v−i

)
− SW

(
(θi, v−i),VCG(vi, v−i)

)
> δ . (2.6)

Let j be an arbitrary player other than i. We choose θi ∈ Ki such that θi(T) =

52

K>i (T),13 and v−i as follows: for every S ⊆ [m]

vj(S)
def
=


H if S = T

H + ε+ maxT ′⊆T vi(T
′) if S = [M]

0 otherwise

and

vk(S)
def
= 0 for every k 6∈ {i, j}.

Above, ε > 0 is some sufficiently small real number, and H is some huge real number

(that is, H is much bigger than vi(S) for any subset S).14 It then is easy to verify

that the outcome VCG(vi, v−i) allocates ∅ to player i, and [M] to player j. Therefore,

SW
(
(θi, v−i),VCG(vi, v−i)

)
= θi(∅) + vj([m]) = H + ε+ max

T ′⊆T
vi(T

′) .

On the other hand, MSW(θi, v−i) ≥ θi(T) + vj(T) = K>i (T) +H, and therefore

MSW
(
θi, v−i

)
−SW

(
(θi, v−i),VCG(vi, v−i)

)
≥
(
K>i (T)+H

)
−
(
H+ε+max

T ′⊆T
vi(T

′)
)

= K>i (T)− ε−max
T ′⊆T

vi(T
′) =

K>i (T)−K⊥i (T)

2
+Kmid

i (T)− ε−max
T ′⊆T

vi(T
′) .

Finally, since Kmid
i (T) −maxT ′⊆T vi(T

′) is strictly greater than δ − K>i (T)−K⊥i (T)

2
, ac-

cording to (2.5), there exists some sufficiently small ε > 0 to make
K>i (T)−K⊥i (T)

2
+

Kmid
i (T) − ε − maxT ′⊆T vi(T

′) > δ. This proves (2.6) and concludes the proof of

Claim 2.8a.

We now prove part Claim 2.8b.

One side of Claim 2.8b is easy: that is, vi(T) − Kmid
i (T) ≥ −(δ − K>i (T)−K⊥i (T)

2
).

Indeed, this inequality follows from maxT ′⊆T vi(T
′) = vi(T) and Claim 2.8a.

To show the other side, that is, vi(T) − Kmid
i (T) ≤ δ − K>i (T)−K⊥i (T)

2
, we again

proceed by contradiction. Suppose there is some T such that

vi(T)−Kmid

i (T) > δ − K>i (T)−K⊥i (T)

2
. (2.7)

We contradict our assumption on vi by showing that Ri(Ki, vi) > δ. Similarly to case

(a), we need to find some v−i and some θi so that inequality (2.6) holds.

Let j be an arbitrary player other than i. This time, we choose θi ∈ Ki such that

θi(T) = K⊥i (T),13 and choose v−i as follows: for every S ⊆ [m]

vj(S) =


H if S = T

H − ε+ vi(T) if S = [M]

0 otherwise

and vk(S)
def
= 0 for every k 6∈ {i, j}.

13Here we have implicitly assumed that K>
i (T) = supKi(T) = maxKi(T), and thus we can pick

θi ∈ Ki so that θi(T) = K>
i (T). If this is not the case, one can construct an infinite sequence

θ
(1)
i , θ

(2)
i , · · · so that θi(T) approaches to K>

i (T), and the rest of the proof remains unchanged.
14Notice that when T = [M] we have T = ∅ and one cannot assign vj(∅) to be a nonzero number.

In that case we can choose H = 0, and the rest of the proof still goes through.

53

Again, ε > 0 is sufficiently small, and H is huge.14 It then is easy to verify that the

outcome VCG(vi, v−i) allocates T to player i and T to player j. Therefore,

SW
(
(θi, v−i),VCG(vi, v−i)

)
= θi(T) + vj(T) = K⊥i (T) +H .

On the other hand, MSW(θi, v−i) ≥ θi(∅) + vj([M]) = H − ε+ vi(T). Therefore,

MSW
(
θi, v−i

)
− SW

(
(θi, v−i),VCG(vi, v−i)

)
≥ (H − ε+ vi(T))− (K⊥i (T) +H)

= vi(T)−Kmid

i (T) +
K>i (T)−K⊥i (T)

2
− ε .

Finally, since vi(T) − Kmid
i (T) is strictly greater than δ − K>i (T)−K⊥i (T)

2
according

to (2.7), there exists some sufficiently small ε > 0 to make vi(T) − Kmid
i (T) +

K>i (T)−K⊥i (T)

2
− ε > δ. This proves (2.6) and concludes the proof of Claim 2.8b.

In sum, Claim 2.8 holds. �

Now we return to the proof of Theorem 2.2. Let v = (v1, . . . , vn) ∈ RMpure(K) be

a regret-minimizing pure strategy profile, and let θ ∈ K be a valuation profile.

For every player i, the strategy v∗i (i.e., the one reporting the ‘middle points’)

has a regret at most δ, owing to Claim 2.7. Since vi minimizes regret among all his

strategies, we immediately have Ri(Ki, vi) ≤ Ri(v
∗
i , Ki) ≤ δ. This shows that vi

satisfies the initial hypothesis of Claim 2.8.

Now, letting (A0, A1, . . . , An) be the allocation in the outcome VCG(v1, . . . , vn),

we immediately have vi(Ai) ≥ vi(T
′) for any T ′ (Ai by the definition of the VCG.

Furthermore, by our choice of the tie-breaking rule, this inequality must be strict:

that is, vi(Ai) > vi(T
′) for any T ′ (Ai. Therefore, letting T = Ai, T satisfies the

hypothesis in Claim 2.8b. Thus, we conclude that

∀i ∈ [n], |vi(Ai)−Kmid

i (Ai)| ≤ δ − K>i (Ai)−K⊥i (Ai)

2
≤ δ − |θi(Ai)−Kmid

i (Ai)|

=⇒ |vi(Ai)− θi(Ai)| ≤ δ . (2.8)

Notice that, if Ai = ∅, then vi(∅) = θi(∅) = 0.

Next, letting (B0, B1, . . . , Bn) be the allocation that maximizes the social welfare

under θ, we have
n∑
i=1

vi(Ai) ≥
n∑
i=1

max
T ′⊆Bi

vi(T
′) (2.9)

because the VCG maximizes social welfare relative to v = (v1, . . . , vn). Moreover,

according to Claim 2.8a we have

∀i ∈ [n], Kmid

i (Bi)−max
T ′⊆Bi

vi(T
′) ≤ δ−K

>
i (Bi)−K⊥i (Bi)

2
≤ δ−|θi(Bi)−Kmid

i (Bi)|

=⇒ θi(Bi)− max
T ′⊆Bi

vi(T
′) ≤ δ . (2.10)

Also notice that, if Bi = ∅, then θi(Bi) = maxT ′⊆Bi vi(T
′) = 0.

54

We are now ready to compute the social welfare guarantee.

SW(θ,VCG(v)) =
∑n

i=1 θi(Ai) ≥
∑n

i=1 vi(Ai)−
∑

i∈[n],Ai 6=∅ δ (using (2.8))

≥
n∑
i=1

max
T ′⊆Bi

vi(T
′)−

∑
i∈[n],Ai 6=∅

δ (using (2.9))

≥
∑n

i=1 θi(Bi)−
∑

i∈[n],Ai 6=∅ δ −
∑

i∈[n],Bi 6=∅ δ (using (2.10))

≥ MSW(θ)− 2 min{n,m}δ .

This concludes the proof of Theorem 2.2. �

Appendix

2.A Theorem 2.1: How to Obtain a Stronger Re-

sult and a Characterization

Payoff equivalence. Two strategies si and s′i are payoff-equivalent for player i if

for any strategy sub-profile s−i of i’s opponents and any θi ∈ Ki, player i’s utilities

are the same when reporting si or s′i. That is, there is no difference for i to report

si or s′i. Given a set of strategies Si for player i, we denote by Ŝi the set that also

includes every strategy of i that is payoff-equivalent to some strategy in Si. We will

use this notation to simplify our statements of the results.

Remark. Two payoff-equivalent strategies of a player i may ultimately yield different

outcomes, but they are effectively the same from i’s point of view. Thus a solution

concept cannot be meaningful unless, when it includes a strategy profile s, it also

includes all strategy profiles s′ such that si and s′i are payoff equivalent for a player i.

We formally state Theorem 2.1 as follows.

Theorem 2.1. In any unrestricted combinatorial auction with n (δ-approximate

Knightian) players and m goods:

(a) For any player i with candidate set Ki, UDi(Ki) = V̂(Ki).

(The set of strategies V(Ki) is formally defined in Definition 2.10, and geo-

metrically described in Appendix 2.A.1 below.)

(b) Even if there are only two players, there exist products of δ-approximate can-

didate sets K = K1 ×K2 and profiles (v1, v2) ∈ UD(K), such that

(best-case θ) ∀θ ∈ K1 ×K2 SW
(
θ,VCG(v1, v2)

)
≤ MSW(θ)− (2m+1 − 5)δ

(worst-case θ) ∃θ ∈ K1 ×K2 SW
(
θ,VCG(v1, v2)

)
≤ MSW(θ)− (2m+1 − 3)δ.

(In Appendix 2.B, we prove one direction of Theorem 2.1a: namely, UDi(Ki) ⊇
V̂(Ki). We shall prove UDi(Ki) ⊆ V̂(Ki) in the full version of the paper. In

Appendix 2.C we show how to derive Theorem 2.1b from Theorem 2.1a.)

55

From sketch to proof. Let us say a few words about how the sketched proof in

Section 2.4 can be extended to a full and slightly stronger proof. The first simplifi-

cation we have made is to suppose that v′1 is a pure strategy. If instead v′1 is a mixed

strategy, say it equals
∑

j p
(j)v

(j)
1 for

∑
j p

(j) = 1 where v
(j)
1 each is a pure strategy,

then the first step is to distinguish between the following three cases (at least one of

them always holds):

(a) ∃ j ∈ {1, . . . , 2m − 1}, v1(Sj+1)− v1(Sj) > min
j

{
max
T⊆Sj+1

v
(j)
1 (T)−max

T⊆Sj
v

(j)
1 (T)

}
(b) v1(S1) > min

j

{
max
T⊆S1

v
(j)
1 (T)

}
(c) v1(S1) < max

j

{
max
T⊆S1

v
(j)
1 (T)

}
In the proof sketch above, we analyzed case (a) when v′1 happens to be a pure strategy.

However, in a full proof, one has to analyze all three cases, without assuming that

v′1 is pure. The analysis of each of these cases, is significantly more involved in this

more general setting.

Furthermore, when analyzing case (a), we distinguished between the case j 6∈
{2m − 2, 2m − 1} or j ∈ {2m − 2, 2m − 1} and only analyzed the former. In the

latter, the choices of “witnesses” θ1 ∈ K1 and v2 in order to create the contradiction

U1(θ1,VCG(v1, v2)) > U1(θ1,VCG(v′1, v2)) are different. Similarly, both (b) and (c)

each have a witness specially crafted for it.

Only when all of (a), (b), and (c) are fully analyzed, we can really conclude that

v1 ∈ UD1(K1).

Finally, even if we expect v2 ∈ UD2(K2) to be true, because v2 ∈ K2 (and thus v2

is not a deviating strategy), actually proving that this is the case essentially amounts

to an analysis that is not much more simple than the one required to show that the

highly-deviating strategy v1 is in UD1(K1). In our full proof in Appendix 2.C, we

actually pick v2 and K2 more carefully (to be also highly-deviating), and doing so

induces a slightly stronger result with the following social welfare upper bound:

SW
(
(θ1, θ2),VCG(v1, v2)

)
≤ MSW(θ1, θ2)− 2(2m − 2)δ .

2.A.1 Geometric Description of V(Ki)

In this section, we just wish to provide an intuitive description of the set V(Ki),

which will be formally defined in Definition 2.10.

The case of two goods. We first describe V(Ki) in the simpler case where there are

only two goods on sale (i.e., m = 2). In this case, the non-empty subsets of the goods

are {1}, {2}, {1, 2}; in particular, a valuation is a point (x, y, z) in three dimensions,

and we can draw it. For the purpose of drawing, we fix the choice Ki({1}) = [6, 9],

Ki({2}) = [8, 11] and Ki({1, 2}) = [10, 13].

We begin with two simple observations:

56

(a) any strategy that “bids below minKi(S) at every coordinate S ⊆ [m]” is domi-

nated; and

(b) any strategy that “bids above maxKi(S) at every coordinate S ⊆ [m]” is domi-

nated.

Property (a) means that a strategy vi such that, for every S, vi(S) is less than

minKi(S) cannot be in V(Ki). That is, V(Ki) does not share any strategies with

the following cuboid (see Figure 2-1(a)):

Cuboid1
def
=

(x, y, z)

∣∣∣∣∣∣
x < minKi({1})
y < minKi({2})
z < minKi({1, 2})

 .

Similarly, property (b) means that a strategy vi such that, for every S, vi(S) is

greater than maxKi(S) cannot be in V(Ki). That is, V(Ki) does not share any

strategies with the following cuboid (see Figure 2-1(b)):

Cuboid2
def
=

(x, y, z)

∣∣∣∣∣∣
x > maxKi({1})
y > maxKi({2})
z > maxKi({1, 2})

 .

Provided that a strategy vi is neither in Cuboid1 nor Cuboid2 (i.e., there are

S ′ and S ′′ for which vi(S
′) > minKi(S

′) and vi(S
′′) < maxKi(S

′′)), there can be

“many ways” in which vi could be in V(Ki). To express this, we need an additional

definition. For valuation sets (S1, S2, S3), define

Cyl(S1, S2, S3)
def
=

(x, y, z)

∣∣∣∣∣∣
x− y ≥ minS1 −maxS2

y − z ≥ minS2 −maxS3

z − x ≥ minS3 −maxS1

 .

Note that Cyl(S1, S2, S3) is a triangular cylinder defined by three halfspaces and its

axis lies on the x = y = z line. For a candidate set Ki, define (see Figure 2-1(c) and

2-1(d))

Cyl1
def
= Cyl(Ki({1}), Ki({2}), Ki({1, 2}))

Cyl2
def
= “ Cyl(Ki({2}), Ki({1}), Ki({1, 2}))

after the transformation (x, y, z) 7→ (y, x, z)”.

Then, disregarding set boundaries, our definition of V(Ki) for m = 2 is as follows

(see Figure 2-1(e)):

V(Ki) = Cyl1 ∪Cyl2 −Cuboid1 −Cuboid2 .

The general case. In the general case (when m need not equal 2), we can analo-

gously define Cuboid1 and Cuboid2. What becomes more complicated is the “cylin-

der structure” of V(Ki). Let us explain.

When m = 2, there are two cylinders in the definition of V(Ki) because there

are two “proper” ways of ordering all non-empty subsets of the two goods: that is

57

0
5

10
15

20

y0
5

10
15

20
x

0

5

10

15

20

z

(a) Cuboid1

0
5

10
15

20

y0
5

10
15

20
x

0

5

10

15

20

z

(b) Cuboid2

0
5

10
15

20

y0
5

10
15

20
x

0

5

10

15

20

z

(c) Cyl1

0
5

10
15

20

y0
5

10
15

20
x

0

5

10

15

20

z

(d) Cyl2

0
5

10
15

20

y0
5

10
15

20
x

0

5

10

15

20

z

(e) V(Ki) (f)

Figure 2-1: Here (f) is a PDF animated rotation (if viewed under Acrobat Reader),
and can also be found at http://people.csail.mit.edu/zeyuan/knightian/vcg.
gif.

58

http://people.csail.mit.edu/zeyuan/knightian/vcg.gif
http://people.csail.mit.edu/zeyuan/knightian/vcg.gif

({1}, {2}, {1, 2}) and ({2}, {1}, {1, 2}). Thus, when m = 2, V(Ki) is the union of the

two cylinders respectively obtained by indexing the three sets Ki({1}), Ki({2}), and

Ki({1, 2}) using the two proper orderings (and minus the two cuboids).

In the general case, there are more such “proper” orderings. Concretely, we say

that a relabeling π of all the non-empty subsets of [M] is proper if j < k implies that

π(Sj) 6⊇ π(Sk). (Note that π(S2m−1) = [m] is always the set of all goods.)

Analogously to the m = 2 case, for each vector of sets S = (S1, . . . , S2m−1), we

define the corresponding fundamental cylinder Cyl(S). Then we consider the union

of all fundamental cylinders corresponding to all vectors of sets obtained by properly

relabeling Ki = (Ki(S1), . . . , Ki(S2m−1)). In sum, the description of V(Ki) in the

general case is:

V(Ki) =
⋃

proper
π

Cyl(π(Ki))−Cuboid1 −Cuboid2 .

For more details see Appendix 2.B.

2.B Proof of One Side of Theorem 2.1a
We introduce some notions before we proceed with the formal statement of the theo-

rem. A labeling of all non-empty subsets of [M] is a vector π = (π1, . . . , π2m−1), where

the πi’s are the 2m − 1 distinct non-empty subsets of [M].

Definition 2.9. A labeling π of all non-empty subsets of [M] is proper if j < k ⇒
πj 6⊇ πk.15

To make the result of our characterization clean, we assume that the candidate set

Ki for the considered player i, is a cartesian product of intervals. That is, Ki(T) =

{θi(T)}θi∈Ki = [aT , bT] for some 0 ≤ aT ≤ bT . We denote by K⊥i (T) = aT the

minimum point in this interval and K>i (T) = bT the maximum point in this set.

Definition 2.10. For any player i with candidate set Ki, the set V(Ki) is the set of

all strategies vi satisfying the following two conditions:

1. at least one coordinate of vi is below (resp., above) the corresponding upper

(resp., lower) bound of Ki:

∃ S ′ ⊆ [M], vi(S
′) ≤ K>i (S ′) , (2.11)

∃ S ′′ ⊆ [M], vi(S
′′) ≥ K⊥i (S ′′) ; (2.12)

2. there exists a proper labeling π of all non-empty subsets of [M] such that, letting

π2m
def
= π1,

∀ j ∈ {1, . . . , 2m − 1} , vi(πj)− vi(πj+1) ≥ K⊥i (πj)−K>i (πj+1) . (2.13)

15For instance, when m is equal to 3 such a permutation could be
({1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}), or ({1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}), and
there are plenty more such permutations.

59

In this section we prove the harder case of Theorem 2.1a: its “if” side. For

this side, it suffices to show that if a strategy vi is in V(Ki) then it is UDi(Ki).

In fact, our proof assumes for simplicity that both vi and Ki satisfy some weak

monotonicity conditions. We now proceed to formally state what we are going to

prove, in Lemma 2.11 below.

Lemma 2.11 (one side of Theorem 2.1a). In the VCG mechanism for combina-

torial auctions, no matter how ties are broken, for each player i having a weakly-

monotone candidate set Ki the following holds.16If vi is a strictly monotone strategy

of i in V(Ki), then vi ∈ UDi(Ki).

We fix a player i throughout, so we drop the subscript i everywhere. In fact,

we can assume without loss of generality that i = 1, and that there is only another

player, player 2, because all the other players can be chosen to report 0 and will thus

not affect the analysis.

Assume by contradiction that a strategy v satisfying the hypothesis of the lemma is

weakly dominated by some possibly mixed strategy {pj, v(j)}j, where the probabilities

pj sum up to 1 and v(j) 6= v for all j. Our goal is to construct a “witness bid”

w : (2[M] −∅)→ R≥0 for the second player and a “witness true valuation” θ ∈ K for

the first player such that, if U is the utility function for the first player, then

U
(
θ,VCG(v, w)

)
>
∑
j

pjU
(
θ,VCG(v(j), w)

)
. (2.14)

This will contradict the fact that the mixed strategy {pj, v(j)}j weakly dominates v.

The construction of w and θ will be through a case analysis.

Notation.

• We call the player reporting v the first player, and the player reporting w the

second player.

• We say that the allocation of VCG(v, w) is (S, T) if the first player receives

S ⊆ [M] and the second player receives T ⊆ [M].

• We use SW[(S, T)]
def
= v(S) + w(T) to denote the “apparent social welfare” of

the allocation (S, T) (i.e., the social welfare when assuming that both players

have the reported strategies (v, w) as their true valuations).

• Since the VCG mechanism maximizes social welfare relative to the reported

strategies, we have that SW[VCG(v, w)] = max(S,T){v(S) + w(T)} where the

maximization is over all S, T ⊆ [M] with S ∩ T = ∅.

• For notational simplicity, given a strategy v, we define its monotonizer ṽ by

ṽ(S)
def
= maxT⊆S v(T).

16A candidate set Ki is weakly monotone if K⊥
i and K>

i are weakly monotone: for all S, T ⊆ [M]
with ∅ (S ⊆ T , K⊥

i (S) ≤ K⊥
i (T) and K>

i (S) ≤ K>
i (T). A strategy is strictly monotone if for all

S, T ⊆ [M] with ∅ (S ⊆ T it holds that vi(S) < vi(T)).

60

Next, among the following inequalities, at least one cannot hold:
v(πi+1)− v(πi) ≤ minj

{
ṽ(j)(πi+1)− ṽ(j)(πi)

}
, ∀ i ∈ {1, . . . , 2m − 1}

v(S ′) ≤ minj

{
ṽ(j)(S ′)

}
v(S ′′) ≥ maxj

{
ṽ(j)(S ′′)

} (2.15)

where π is any proper labeling guaranteed by the hypothesis of the lemma. Indeed,

we now show that if all inequalities above hold, there must be a contradiction.

From the first inequality we deduce that, for each i and j, v(πi+1) − v(πi) ≤
ṽ(j)(πi+1)− ṽ(j)(πi); for i ∈ {1, . . . , 2m − 1}, all these sum up to 0 ≤ 0. In particular,

all such inequalities must be tight, so for each j, v(j) must be the same as v, up to a

constant shift. In other words,

∀S ⊆ [M] with S 6= ∅ , v(j)(S) = v(S) + c(j) for some constant c(j) .

Substituting the above into the second and third inequality in (2.15), we deduce that

0 ≤ minj c
(j) and 0 ≥ maxj c

(j), and therefore the c(j) must all be 0, contradicting the

fact that v(j) 6= v.

Therefore, one of the three kinds of inequalities in (2.15) cannot hold; we thus have

three cases, depending on which kind of inequality does not hold. We now show that,

for each possible case (respectively discussed in Appendix 2.B.1, Appendix 2.B.2,

and Appendix 2.B.3), (2.14) holds, and therefore the strategy v cannot be weakly

dominated.

2.B.1 Case 1

Suppose that the first inequality of (2.15) does not hold for some i. For notational

simplicity, assume that it does not hold for i = 1, i.e.,

v(π2)− v(π1) > min
j

{
ṽ(j)(π2)− ṽ(j)(π1)

}
.

We let J = arg minj

{
ṽ(j)(π2)− ṽ(j)(π1)

}
be the set of minimizers, and let j∗ ∈ J

be one of them. We can always choose some ∆ such that

v(π2)− v(π1) > ∆ > ṽ(j∗)(π2)− ṽ(j∗)(π1) , (2.16)

and for every j 6∈ J :

ṽ(j)(π2)− ṽ(j)(π1) > ∆ . (2.17)

Now, we set the witness strategy of the other player to be w(π1) = H + ∆,

w(π2) = H and w(S) = 0 anywhere else. Here H is some very large value. We will

deal with the case when π1 = ∅ or π2 = ∅ later, since we cannot set the second

player to have non-zero valuation on an empty set. We claim that:

Claim 2.12. If π1 6= ∅ and π2 6= ∅:

a. The allocation of VCG(v, w) is ω = (π2, π2).

61

b. For all j∗ ∈ J , the allocation of VCG(v(j∗), w) is ω = (T, π1) for some T ∈
arg maxT⊆π1 v

(j∗)(T) (or a probabilistic distribution over them in case of ties).

c. For all j 6∈ J , the allocation of VCG(v(j), w) is ω = (T, π2) for some T ∈
arg maxT⊆π2 v

(j)(T) (or a probabilistic distribution over them in case of ties).

Proof. For any candidate allocation (S, T) of the VCG mechanism when the second

player reports w, if T 6∈ {π1, π2}, then SW[(S, T)] does not contain the big term H

and is thus smaller than any SW[ω] in all three cases. Therefore, we only need to

consider outcomes of the form (S, π1) and (S, π2).

a. In this case, SW[ω] = v(π2) + H. If the allocation is of the form (S, π2), by

the strict monotonicity of v, (π2, π2) = ω must be the allocation with the best

social welfare. If the allocation is of the form (S, π1), similarly, (π1, π1) must be

the allocation with the best social welfare, however, in this case v(π1)+w(π1) =

v(π1) + H + ∆ < v(π2) + H = SW[ω], using (2.16). In sum, ω = (π2, π2) must

be the allocation of the VCG mechanism.

b. In this case, SW[ω] = ṽ(j∗)(π1) + H + ∆. For the allocation of (S, π1), S

must be a subset of π1 and therefore S ∈ arg maxT⊆π1 v
(j∗)(T) as desired, since

the VCG mechanism is outputting an allocation with the maximum reported

social welfare. For the allocation of (S, π2), SW[(S, π2)] ≤ ṽ(j∗)(π2) + H <

ṽ(j∗)(π1) +H + ∆ = SW[ω] (using (2.16)) is worse than the choice of ω. So the

allocation must be of the desired form.

c. In this case, SW[ω] = ṽ(j)(π2) + H. For the allocation of (S, π1), we have that

SW[(S, π1)] ≤ ṽ(j)(π1) +H + ∆ < ṽ(j)(π2) +H = SW[ω] (using (2.17)) is worse

than the choice of ω. For the allocation of (S, π2), S must be a subset of π2

and therefore S ∈ arg maxT⊆π2 v
(j)(T) as desired, since the VCG mechanism is

outputting an allocation with the maximum reported social welfare. In sum,

the allocation must be of the desired form.

�
Claim 2.13. When π1 = ∅ or π2 = ∅, Claim 2.12 only requires the following small

changes:

a. When π1 = ∅ (i.e., π1 = [M]), at any time (T, π1) is a possible allocation

declared in Claim 2.12, (T,R) for R ⊆ T is now also possible.17

b. When π2 = ∅ (i.e., π2 = [M]), at any time (T, π2) is a possible allocation

declared in Claim 2.12, (T,R) for R ⊆ T is now also possible.18

17As a consequence, Claim 2.12(a) and Claim 2.12(c) still hold, but Claim 2.12(b) will be changed
to include the possible outcomes of ω = (T,R) where T is still in arg maxT⊆π2

v(j)(T) but w ⊆ T .
18As a consequence, Claim 2.12(b) still holds, but Claim 2.12(a) and Claim 2.12(c) need small

changes.

62

Proof.

a. This is because, due to the (strict) monotonicity of v we have v(π1) > v(π2)

and thus (2.16) tells us that ∆ < 0. Instead of choosing some sufficiently large

H, we can choose H = −∆. It will make sure that w(∅) = w(π1) = 0 while

w(π2) = −∆ > 0. The only place that we used H being sufficiently large, is

where we declare that the only possible candidate allocation for VCG(·, w) is of

the form (S, π1) or (S, π2). This is no longer true as we have to also consider

(S,R) for R 6= π1 or π2. However, since w(R) = 0, SW[(S,R)] = SW[(S,∅)] =

SW[(S, π1)]. This means, allocation (S,R) will be possible only if (S, π1) is

possible.

b. This is because, due to the weak monotonicity of ṽ(j∗) we have ṽ(j∗)(π2) ≥
ṽ(j∗)(π1) and thus (2.16) tells us that ∆ > 0. Instead of choosing some suffi-

ciently large H, we can choose H = 0. It will make sure that w(∅) = w(π2) = 0

while w(π1) = ∆ > 0. The only place that we used H being sufficiently large,

is where we declare that the only possible candidate allocation for VCG(·, w) is

of the form (S, π1) or (S, π2). This is no longer true as we have to also consider

(S,R) for R 6= π1 or π2. However, since w(R) = 0, SW[(S,R)] = SW[(S,∅)] =

SW[(S, π2)]. This means, allocation (S,R) will be possible only if (S, π2) is

possible.

�

Now, we have some knowledge about what outcomes could be outputted by the

VCG mechanism, on input (v, w), and on (v(j), w). We now come to the final part

that is to show that (2.14) holds. We first compute the utilities in all three cases:

Claim 2.14. If we choose θ(π2) = K>(π2) and θ(S) = K⊥(S) for everything else

(i.e., S 6= ∅ and S 6= π2).

a. U(θ,VCG(v, w)) = K>(π2) +H −maxS w(S),

b. U(θ,VCG(v(j∗), w)) ≤ K⊥(π1) +H + ∆−maxS w(S) for every j∗ ∈ J , and

c. U(θ,VCG(v(j), w)) ≤ K>(π2) +H −maxS w(S) for every j 6∈ J .

Proof.

a. We have proved in Claim 2.12(a) that (π2, π2) is the only possible allocation in

this case, and therefore U(θ,VCG(v, w)) = U(θ, (π2, π2)) = K>(π2) + w(π2) −
maxS w(S) = K>(π2) +H −maxS w(S).

b. We have proved in Claim 2.12(b) that (T, π1) is the only possible allocation

in this case, and therefore if T 6= π2, we have U(θ,VCG(v(j∗), w)) = K⊥(T) +

63

w(π1)−maxS w(S) ≤ K⊥(π1) +H + ∆−maxS w(S). (Here we used the weak

monotonicity of K⊥, i.e., K⊥(T) ≤ K⊥(π1).)

Otherwise, if T = π2 (i.e., the allocation is (π2, π1), we must have that π2 (π1.

By the (strict) monotonicity of v and (2.16), we have that ∆ < V (π2)−V (π1) <

0. In this case, since w(π1) = H+∆ = w(π2)+∆, we know that SW[(π2, π2)] =

SW[(π2, π1)] − ∆ > SW[(π2, π1)]. This indicates that (π2, π1) will never be a

possible outcome , giving a contradiction.

c. We have proved in Claim 2.12(c) that (T, π2) is the only possible allocation in

this case, and therefore U(θ,VCG(v(j∗), w)) ≤ K>(T) + w(π2) − maxS w(S) ≤
K>(π2) + w(π2)−maxS w(S) = K>(π2) + H −maxS w(S). (Here we used the

weak monotonicity of K>, i.e., K>(T) ≤ K>(π2).)

We remark here that, in the case when π1 = ∅ or π2 = ∅, the allocation might also

be (S,R) for some w(R) = 0, but one can check that the same conclusions still hold,

by our choice of H.) �

Corollary 2.15. (2.14) is satisfied.

Proof. We recall that (2.13) tells us that v(π2) − v(π1) ≤ K>(π2) −K⊥(π1), but we

have v(π2)− v(π1) > ∆ in (2.16). This tells us that K>(π2) > K⊥(π1) + ∆.

Now, for every j∗ ∈ J ,

U(θ,VCG(v, w)) = K>(π2)+H−max
S

w(S) > K⊥(π1)+H+∆−max
S

w(S) ≥ U(θ,VCG(v(j∗), w))

while for every j 6∈ J ,

U(θ,VCG(v, w)) = K>(π2) +H −max
S

w(S) ≥ U(θ,VCG(v(j), w))

The combination of them immediately implies (2.14) �

We recall that (2.14) gives a contradiction and says that v is an undominated

strategy, and this ends the proof of Lemma 2.11, for Case 1.

2.B.2 Case 2

Suppose that the second inequality of (2.15) does not hold, that is, v(S ′) > minj{v(j)(S ′)}.
Similarly as in Case 1, we let J = arg minj

{
ṽ(j)(S ′)

}
be the set of minimizers, and

let j∗ ∈ J be one of them. We can always choose some ∆ such that

v(S ′) > ∆ > ṽ(j∗)(S ′) , (2.18)

and for every j 6∈ J :

ṽ(j)(S ′) > ∆ . (2.19)

Now, consider the following witness player, with w(S ′) = H and w([M]) = H+∆,

and w(S) = 0 everywhere else. Notice that unlike Case 1, ∆ > 0 is always positive.

We also let H be sufficiently large when S ′ 6= ∅. We choose H = 0 if S ′ = ∅.

64

Claim 2.16 (A variant of Claim 2.12). If S ′ 6= ∅,

a. The allocation of VCG(v, w) is ω = (S ′, S ′)

b. For all j∗ ∈ J , the allocation of VCG(v(j∗), w) is ω = (∅, [M]).

c. For all j 6∈ J , the allocation of VCG(v(j), w) is ω = (T, S ′), where T ∈ arg maxT⊆S′ v
(j)(T)

(or a probabilistic distribution over them in case of ties).

Proof. For any candidate allocation (S, T) of the VCG mechanism when the second

player reports w, if T 6∈ {S ′, [M]}, then SW[(S, T)] does not contain the big term H

and is thus smaller than any SW[ω] in all three cases. Therefore, we only need to

consider outcomes of the form (S, S ′) and (∅, [M]).

a. In this case, SW[ω] = v(S ′) +H. If the allocation is of the form (S, S ′), by the

strict monotonicity of v, (S ′, S ′) = ω must be the allocation with the best social

welfare. If the allocation is (∅, [M]) its social welfare SW[(∅, [M])] = ∆ +H <

v(S ′) + H = SW[ω], using (2.18). In sum, ω = (S ′, S ′) must be the allocation

of the VCG mechanism.

b. In this case, SW[ω] = H+∆. For the allocation of the form (S, S ′), SW[(S, S ′)] ≤
ṽ(j∗)(S) +H < H + ∆ = SW[ω] (using (2.18)) is worse than the choice of ω.

c. In this case, SW[ω] = ṽ(j)(S ′) +H. For the allocation of (∅, [M]), we have that

SW[(∅, [M])] = H + ∆ < ṽ(j)(S ′) + H = SW[ω] (using (2.19)) is worse than

the choice of ω. For the allocation of the form (S, S ′), S must be a subset of

S ′ and therefore S ∈ arg maxT⊆S′ v
(j)(T) as desired, since the VCG mechanism

is outputting an allocation with the maximum reported social welfare. In sum,

the allocation must be of the desired form.

�

Claim 2.17 (A variant of Claim 2.13). When S ′ = ∅ (i.e., S ′ = [M]), Claim 2.16

only requires the following small changes:

at any time (T, S ′) is a possible allocation declared in Claim 2.16, (T,R) for

R ⊆ T is now also possible.19

Proof. Recall that, instead of choosing some sufficiently large H, we choose H = 0

in this case. The only place that we used H being sufficiently large, is where we

declare that the only possible candidate allocation for VCG(·, w) is of the form S, S ′)

or (∅, [M]). This is no longer true as we have to also consider (S,R) for R 6= S ′ or

[M]. However, since w(R) = 0, SW[(S,R)] = SW[(S,∅)] = SW[(S, S ′)]. This means,

allocation (S,R) will be possible only if (S, S ′) is possible. �
19As a consequence, Claim 2.16(b) still holds, but Claim 2.16(a) and Claim 2.16(c) need small

changes.

65

Now, we have some knowledge about what outcomes could be outputted by the

VCG mechanism, on input (v, w) and on (v(j), w). We now come to the final part that

is to show that (2.14) holds. We first compute the utilities in all three cases:

Claim 2.18 (A variant of Claim 2.14). If we choose θ(S) = K>(S) for everything

non-empty S:

a. U(θ,VCG(v, w)) = K>(S ′) +H −maxS w(S),

b. U(θ,VCG(v(j∗), w)) = H + ∆−maxS w(S) for every j∗ ∈ J , and

c. U(θ,VCG(v(j), w)) ≤ K>(S ′) +H −maxS w(S) for every j 6∈ J .

Proof.

a. We have proved in Claim 2.16(a) that (S ′, S ′) is the only possible allocation in

this case, and therefore U(θ,VCG(v, w)) = U(θ, (S ′, S ′)) = K>(S ′) + w(S ′) −
maxS w(S) = K>(S ′) +H −maxS w(S).

(In the case when S ′ = ∅, the allocation might also be (S ′, R) for some w(R) =

0, and since we have chosen H = 0 this utility equation still holds.)

b. We have proved in Claim 2.16(b) that (∅, [M]) is the only possible allocation

in this case, and therefore U(θ,VCG(v(j∗), w)) = 0 + w([M]) − maxS w(S) =

H + ∆−maxS w(S).

c. We have proved in Claim 2.16(c) that (T, S ′) is the only possible allocation in

this case, and therefore U(θ,VCG(v(j), w)) ≤ K>(T) + w(S ′) − maxS w(S) ≤
K>(S ′) + w(S ′)−maxS w(S) = K>(S ′) +H −maxS w(S).

(Here we used the weak monotonicity of K>, i.e., K>(T) ≤ K>(S ′). In the case

when S ′ = ∅, the allocation might also be (T,R) for some w(R) = 0, and since

we have chosen H = 0 this utility equation still holds.)

�

Corollary 2.19. (2.14) is satisfied.

Proof. We recall that (2.11) and (2.18) tell us that ∆ < v(S ′) ≤ K>(S ′). Now, for

every j∗ ∈ J ,

U(θ,VCG(v, w)) = K>(S ′)+H−max
S

w(S) > H+∆−max
S

w(S) = U(θ,VCG(v(j∗), w))

while for every j 6∈ J ,

U(θ,VCG(v, w)) = K>(S ′) +H −max
S

w(S) ≥ U(θ,VCG(v(j), w))

The combination of them immediately implies (2.14) �

We recall that (2.14) gives a contradiction and says that v is an undominated

strategy, and this ends the proof of Lemma 2.11, for Case 2.

66

2.B.3 Case 3

Suppose that the second inequality of (2.15) does not hold, that is, v(S ′′) < maxj{v(j)(S ′′)}.
Similarly as in Cases 1 and 2, we let J = arg maxj

{
ṽ(j)(S ′′)

}
be the set of maximizers,

and let j∗ ∈ J be one of them. We can always choose some ∆ such that

v(S ′′) < ∆ < ṽ(j∗)(S ′′) , (2.20)

and for every j 6∈ J :

ṽ(j)(S ′′) < ∆ . (2.21)

Now, consider the following witness player, with w(S ′′) = H and w([M]) = H+∆,

and w(S) = 0 everywhere else. Notice that unlike Case 1, ∆ > 0 is always positive.

We also let H be sufficiently large when S ′′ 6= ∅. We choose H = 0 if S ′′ = ∅.

Claim 2.20 (A variant of Claim 2.12). If S ′′ 6= ∅,

a. The allocation of VCG(v, w) is ω = (∅, [M]).

b. For all j∗ ∈ J , the allocation of VCG(v(j∗), w) is ω = (T, S ′′), where T ∈
arg maxT⊆S′′ v

(j)(T) (or a probabilistic distribution over them in case of ties).

c. For all j 6∈ J , the allocation of VCG(v(j), w) is ω = (∅, [M]).

Proof. For any candidate allocation (S, T) of the VCG mechanism when the second

player reports w, if T 6∈ {S ′′, [M]}, then SW[(S, T)] does not contain the big term

H and is thus smaller than any SW[ω] in all three cases. Therefore, we only need to

consider outcomes of the form (S, S ′′) and (∅, [M]).

a. In this case, SW[ω] = H + ∆. If the allocation is of the form (S, S ′′), by

the strict monotonicity of v, (S ′′, S ′′) = ω must be the allocation with the

best social welfare. However, its social welfare SW[(S ′′, S ′′)] = v(S ′′) + H <

H + ∆ = SW[ω], using (2.20). In sum, (∅, [M]) must be the allocation of the

VCG mechanism.

b. In this case, SW[ω] = ṽ(j∗)(S ′′)+H. For the allocation of (∅, [M]), we have that

SW[(∅, [M])] = H + ∆ < ṽ(j∗)(S ′′) + H = SW[ω] (using (2.20)) is worse than

the choice of ω. For the allocation of the form (S, S ′′), S must be a subset of S ′′

and therefore S ∈ arg maxT⊆S′′ v
(j∗)(T) as desired, since the VCG mechanism is

outputting an allocation with the maximum reported social welfare. In sum,

the allocation must be of the desired form.

c. In this case, SW[ω] = H+∆. For the allocation of the form (S, S ′′), SW[(S, S ′′)] ≤
ṽ(j)(S) +H < H + ∆ = SW[ω] (using (2.21)) is worse than the choice of ω.

�

67

Claim 2.21 (A variant of Claim 2.13). When S ′′ = ∅ (i.e., S ′′ = [M]), Claim 2.20

only requires the following small changes:

at any time (T, S ′′) is a possible allocation declared in Claim 2.20, (T,R) for

R ⊆ T is now also possible.20

Proof. Recall that, instead of choosing some sufficiently large H, we choose H = 0 in

this case. The only place that we used H being sufficiently large, is where we declare

that the only possible candidate allocation for VCG(·, w) is of the form (S, S ′′) or

(∅, [M]). This is no longer true as we have to also consider (S,R) for R 6= S ′′ or [M].

However, since w(R) = 0, SW[(S,R)] = SW[(S,∅)] = SW[(S, S ′′)]. This means,

allocation (S,R) will be possible only if (S, S ′′) is possible. �

Now, we have some knowledge about what outcomes could be outputted by the

VCG mechanism, on input (v, w) and on (v(j), w). We now come to the final part that

is to show that (2.14) holds. We first compute the utilities in all three cases:

Claim 2.22 (A variant of Claim 2.14). If we choose θ(S) = K⊥(S) for all non-empty

S:

a. U(θ,VCG(v, w)) = H + ∆−maxS w(S),

b. U(θ,VCG(v(j∗), w)) ≤ H +K⊥(S ′′)−maxS w(S) for every j∗ ∈ J , and

c. U(θ,VCG(v(j), w)) = ∆ +H −maxS w(S) for every j 6∈ J .

Proof.

a. We have proved in Claim 2.20(a) that (∅, [M]) is the only possible allocation

in this case, and therefore U(θ,VCG(v, w)) = U(θ, (∅, [M])) = 0 + w(S ′′) −
maxS w(S) = H + ∆−maxS w(S).

b. We have proved in Claim 2.20(b) that (T, S ′′) is the only possible allocation in

this case, and therefore U(θ,VCG(v(j∗), w)) ≤ K⊥(T) + w(S ′′) −maxS w(S) ≤
K⊥(S ′′) + w(S ′′)−maxS w(S) = K⊥(S ′′) +H −maxS w(S).

(Here we used the weak monotonicity of K⊥, i.e., K⊥(T) ≤ K⊥(S ′′). In the case

when S ′′ = ∅, the allocation might also be (T,R) for some w(R) = 0, and since

we have chosen H = 0 this utility equation still holds.)

c. We have proved in Claim 2.20(c) that (∅, [M]) is the only possible allocation

in this case, and therefore U(θ,VCG(v(j), w)) = 0 + w([M]) − maxS w(S) =

H + ∆−maxS w(S).

20As a consequence, Claim 2.20(a) and Claim 2.20(c) still hold, but Claim 2.20(b) needs small
changes.

68

�

Corollary 2.23. (2.14) is satisfied.

Proof. We recall that (2.12) and (2.20) tell us that ∆ > v(S ′′) ≥ K⊥(S ′′). Now, for

every j∗ ∈ J ,

U(θ,VCG(v, w)) = H+∆−max
S

w(S) > H+K⊥(S ′′)−max
S

w(S) = U(θ,VCG(v(j∗), w))

while for every j 6∈ J ,

U(θ,VCG(v, w)) = H + ∆−max
S

w(S) = U(θ,VCG(v(j), w))

The combination of them immediately implies (2.14) �

We recall that (2.14) gives a contradiction and says that v is an undominated

strategy, and this ends the proof of Lemma 2.11, for Case 3.

2.C Proof of Theorem 2.1b

Theorem 2.1b (restated). In a combinatorial Knightian auction with 2 players and

m goods, consider the VCG with any tie-breaking rule, then there exist products of

δ-approximate candidate sets K = K1×K2 and profiles (v1, v2) ∈ UD(K), such that

(best-case θ) ∀θ ∈ K1 ×K2 SW
(
θ,VCG(v1, v2)

)
≤ MSW(θ)− (2m+1 − 5)δ

(2.22)

(worst-case θ) ∃θ ∈ K1 ×K2 SW
(
θ,VCG(v1, v2)

)
≤ MSW(θ)− (2m+1 − 3)δ.

(2.23)

We prove the theorem in two steps.

Step 1 (Appendix 2.C.1). We construct a candidate hard instance for the VCG

mechanism, by specifying two candidate sets K1 and K2 and two corresponding

undominated strategies v1 and v2, for player 1 and player 2 respectively. To show

that indeed v1 ∈ UD1(K1) and v2 ∈ UD2(K2), we prove that our choices of v1 and

v2 do satisfy the requirements given in Lemma 2.11.

Step 2 (Appendix 2.C.2). We show that if player 1 has candidate set K1 and

reports v1, and player 2 has candidate set K2 and reports v2 (while other players

report 0), the fraction of the maximum social welfare that is guaranteed is at most

the value stated in the theorem.

2.C.1 Construction of The Hard Instance

We construct two candidate sets K1 and K2 and two strategies v1 and v2 where, for

i = 1, 2, Ki and vi together satisfy the hypothesis of Lemma 2.11; we deduce that for

our choices it holds that v1 ∈ UD1(K1) and v2 ∈ UD2(K2). These choices form our

69

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12 Π13 Π14 Π15

»

0

x

x+H2m-2L∆

ì Θ1

æ
v1

K1

(a) K1 and v1 with v1 ∈ UD1(K1), and θ1 ∈ K1

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12 Π13 Π14 Π15

»

H2-1L∆

x+2H2m-2L∆

H2H2m-2L-1L∆

H2H2m-3L-1L∆

∆

x+H2m-2L∆

H2m-2L∆

ì Θ2

æ v2

K2

(b) K2 and v2 with v2 ∈ UD2(K2), and θ2 ∈ K2

Figure 2-2: The two hard instances constructed in Section 2.C.1 and the choice of
true valuation made in Section 2.C.2, for the special case of m = 4.

70

candidate hard instance for the VCG mechanism. (We carry out the social welfare

analysis in Section 2.C.2.)

Fix any labeling π over all 2m − 1 non-empty subsets of [M] such that:

1. if i < j, then πi 6⊇ πj (i.e., π is proper, cf. Definition 2.9);

2. πi = π2m−1−i; and

3. π2m−1 = [M].

For instance, when m = 3 we can let π = ({1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}).
It is a simple exercise to prove that such a π exists for any m ≥ 2.

Also fix any positive constant x (which should be thought of as a large constant).

We begin by choosing K1 and v1 (depending on π and x), and showing that

v1 ∈ UD1(K1):

Claim 2.24. Choose:

• K1 to be such that K1(πi) = [x− δ/2, x+ δ/2] for all i ∈ {1, . . . , 2m − 1}.
• v1 to be such that v1(πi) = x+ (i− 1)δ for all i ∈ {1, . . . , 2m − 1}.

(See Figure 2-2(a).) Then v1 ∈ UD1(K1).

Proof. It suffices to verify that the assumptions in Lemma 2.11 hold. Indeed, K⊥1 and

K>1 are both weakly monotone because they are constant; v1 is strictly monotonic

since v1(πi) < v1(πj) if i < j. If we choose S ′ = S ′′ = π1, we definitely have

v1(S ′) = x ≤ x+ δ/2 = K>1 (S ′) and v1(S ′′) = x ≥ x− δ/2 = K⊥1 (S ′′). Finally, we are

left to verify (2.13), and we need a “witness labeling” for that. We simply choose π

to be this labeling for which we have:

∀ i ∈ {1, . . . , 2m − 2} , v1(πi)− v1(πi+1) = −δ = K⊥1 (πi)−K>1 (πi+1) ,

and for i = 2m − 1,

v1(π2m−1)− v1(π1) > 0 > −δ = K⊥1 (π2m−1)−K>1 (π1) .

This ends the proof that v1 ∈ UD1(K1). �

Next, fixing any positive constant ε (which should be thought of as a small con-

stant), we choose K2 and v2 (depending on π, x, and ε), and show that v2 ∈ UD2(K2):

Claim 2.25. Choose:

• K2 to be such that

K2(πi) =
[
(2i− 1)δ − ε, 2iδ − ε

]
for all i ∈ {1, . . . , 2m − 2}, and K2(π2m−1) to be

K2(π2m−1) =
[
x+ 2(2m − 2)δ − ε, x+ (2(2m − 2) + 1)δ − ε

]
.

• v2 to be such that v2(πi) = iδ − ε for all i ∈ {1, . . . , 2m − 2}, and v2(π2m−1) =

x+ (2m − 2)δ − ε.

(See Figure 2-2(b).) Then v2 ∈ UD2(K2) owing to Lemma 2.11.

71

Proof. First, for sufficiently small ε, K⊥2 (πi) and K>2 (πi) are both positive. Once

again it suffices to verify that the assumptions in Lemma 2.11 hold. Indeed, K⊥2 , K>2 ,

and v2 are all strictly monotonic:

• K⊥2 (πi) < K⊥2 (πj) for i < j,

• K>2 (πi) < K>2 (πj) for i < j, and

• v2(πi) < v2(πj) if i < j.

If we choose S ′ = S ′′ = π1, we have v2(S ′) = δ − ε < 2δ − ε = K>2 (S ′) and v2(S ′′) =

δ − ε = K⊥2 (S ′′). We are left to verify (2.13), and we need a “witness labeling” for

that. We now choose the labeling that is the “reverse” of π, i.e., we let π′i = π2m−i;

for this choice of π′ we have:

• for 2 ≤ i ≤ 2m − 2 and let j = 2m − 1− i ∈ {1, 2, . . . , 2m − 3}:
v2(π′i)− v2(π′i+1) = v2(πj+1)− v2(πj) = δ

=
(
(2(j + 1)− 1)δ − ε

)
−
(
2jδ − ε

)
= K⊥2 (πj+1)−K>2 (πj) = K⊥2 (π′i)−K>2 (π′i+1) ,

• for i = 1:

v2(π′i)− v2(π′i+1) = v2(π2m−1)− v2(π2m−2) = x

= K⊥2 (π2m−1)−K>2 (π2m−2) = K⊥2 (π′i)−K>2 (π′i+1) ,

• for i = 2m − 1:

v2(π′i)− v2(π′i+1) = v2(π1)− v2(π2m−1)

= − x− (2m − 3)δ > −x− (2(2m − 2))δ

= K⊥2 (π1)−K>2 (π2m−1) = K⊥2 (π′i)−K>2 (π′i+1) .

This ends the proof that v2 ∈ UD2(K2) owing to Lemma 2.11. �

2.C.2 Putting Things Together

Let the first two players respectively have candidate sets K1 and K2 and play the un-

dominated strategies v1 and v2 (from Claim 2.24 and Claim 2.25, and see also Figure 2-2);

let the rest of the players have valuation 0 and report 0 (which is an undominated

strategy for each such player).

We make the following observations:

• When the players report v
def
= (v1, v2, 0, . . . , 0), the VCG mechanism will always

choose the allocation A = ([M],∅, . . . ,∅).

Indeed, the social welfare of A relative to v is

v1([M]) = v1(π2m−1) = x+ (2m − 2)δ .

On the other hand, for any allocation giving πi 6= ∅ to player 1 and π2m−1−i = πi
to player 2, the social welfare relative to v is equal to

v1(πi) + v2(π2m−1−i) = (x+ (i− 1)δ) + (2m − 1− i)δ − ε = x+ (2m − 2)δ − ε ,

72

which is smaller than that achieved by A; furthermore, for any allocation giving

∅ to player 1 and [M] to player 2, the social welfare relative to v is equal to

v2([M]) = v2(π2m−1) = x+ (2m − 2)δ − ε ,
which again is also smaller than that achieved by A.

• Assume that we pick the true valuation θ1 ∈ K1 for player 1 to be such that

θ1(S) = x for all non-empty S, and θ2 ∈ K2 for player 2 to be such that

θ2(S) = K>2 (S). Of course, we can only choose θi(S) = 0 for all other players

i > 2. (See Figure 2-2)

• The true social welfare on allocation A is θ1([M]) = x.

• The maximum social welfare is instead the following:

MSW(θ) ≥ θ2([M]) = K>2 (π2m−1) = x+ (2(2m − 2) + 1)δ − ε .

• Hence, the obtained social welfare compared to the maximum social welfare in

this case is

SW(θ,VCG(v)) = x ≤ MSW(θ)− (2(2m − 2) + 1)δ + ε .

By choosing ε > 0 sufficiently small, the social welfare guarantee of the VCG

mechanism is at most

MSW(θ)− (2m+1 − 3)δ .

This finishes the proof of (2.23), the worst-case choice of θ for Theorem 2.1b.

For the best-case choice of θ, we observe that for the same choice of v1, v2,K1, K2,

A:

• The true social welfare on allocation A is θ1([M]) ≤ x+ δ/2.

• The maximum social welfare is instead the following:

MSW(θ) ≥ θ2([M]) ≥ K⊥2 (π2m−1) = x+ 2(2m − 2)δ − ε .

• Hence, the obtained social welfare compared to the maximum social welfare in

this case is

SW(θ,VCG(v)) ≤ x+ δ/2 ≤ MSW(θ)− 2(2m − 2)δ + δ/2 + ε .

By choosing ε > 0 sufficiently small, the social welfare guarantee of the VCG

mechanism is at most

MSW(θ)− (2m+1 − 5)δ .

This finishes the proof of (2.22), the best-case choice of θ for Theorem 2.1b. �

73

2.D Theorem 2.2 with Mixed Strategies

In this section we prove an analogue of Theorem 2.2 for mixed strategies, as follows.

Theorem 2.2′. In a combinatorial Knightian auction with n players and m goods,

let the VCG mechanism break ties by preferring subsets with smaller cardinali-

ties.21Then, for all δ, all products K of δ-approximate candidate sets, all profiles

θ ∈ K, all profiles of mixed strategies σ ∈ RMmix(K), and all p ≥ 1, we have with

probability at least 1− 1/p over the choices of v from σ:

SW(θ,VCG(v)) ≥ MSW(θ)−O(n2p) · δ .

(This result can be tightened to O(n log n log(1/p) · δ) either when (1) players are

restricted to consider only monotone valuations (i.e., θi(S) ≤ θi(T) for any S ⊆ T), or

when (2) players are studying RMmix(UD(K)) strategies, rather than just RMmix(K).)

Before proving this theorem, we first illustrate why the result is very different

from that of Theorem 2.2.

2.D.1 Why Allowing Mixed Strategies Yields a Different Re-

sult

When a regret-minimizing player considers mixed strategies, he may significantly

deviate (in expectation) from his candidate set. (This stands in contrast to the pure-

strategy case, where he may deviate by at most δ; cf. Claim 2.8.) In fact, deviating

may happen even in a single-good auction.

An Example in a Single-Good Auction. Let i be a player with candidate set

Ki = [x, x + δ] in a single-good (Knightian) auction. One can carefully verify that

his minimum regret is at most δ
4
, obtained by a mixed strategy of bidding uniformly

at random between x and x+ δ. However, we state without proof that the following

mixed strategy σi also provides a regret of δ
4
:

σi =

{
drawn uniformly at random from [x, x+ 3

4
δ] w.p. 3

4
;

x+ tδ, w.p. 1
4
(1
t
− 1

t+1
) where t ∈ Z+.

(2.24)

Note that the expected bidding value E[σi] = +∞ is unbounded from above, and

one can similarly construct a strategy in which player i arbitrarily (in expectation)

underbids. This destroys the hope of using linearity of expectation to deduce the

mixed-strategy case as a corollary of the pure-strategy one.

However, any such deviation always satisfies the probabilistic guarantee Pr[σi ≥
x + tδ] ≤ 1

4t
for overbidding (and similarly, underbidding), resulting in the simple

conclusion that, with constant probability, none of the n players over/underbids by

21If giving subsets A or B (A to player i provides the same social welfare, then the VCG will
give B to player i.

74

more than O(nδ). The social welfare is therefore affected by at most O(n2δ) in a

single-good auction.22

A Harder Problem in Combinatorial Auctions. In combinatorial auctions

with m goods, each player reports 2m − 1 values on each of the 2m − 1 non-empty

subsets of [m]. Thus, a player may (in principle) choose to independently overbid or

underbid each of his 2m−1 coordinates, according to (2.24). If so, then, with constant

probability, he may choose to (a) overbid by O(2mδ) on one of his coordinates, and

(b) underbid by O(2mδ) on another.

This possibility complicates the analysis, because such a choice of strategy may

lead to a social welfare loss of O(2mδ). Interestingly, we show that (a) cannot happen,

but (b) can. However, when (b) happens, the social welfare is not going to be affected

much.

2.D.2 Proof of Theorem 2.2′

Proof. We begin by explicitly writing down the formulation of the (maximum) regret

in (2.4) for mixed strategies. Given a candidate setKi of player i, and a possibly mixed

strategy σi from which his bidding strategy vi is drawn, the (expected maximum)

regret of σi for player i is

Ri(Ki, σi) = max
θi∈Ki

max
v−i

(
MSW

(
θi, v−i

)
− Evi∼σi

[
SW
(
(θi, v−i),VCG(vi, v−i)

)])
.

(2.25)

We also recall the following notations. For each player i, each candidate set

Ki ⊂ Θi, and each subset T ⊆ [m], we let

Ki(T)
def
= {θi(T)}θi∈Ki , K⊥i (T)

def
= inf Ki(T),

K>i (T)
def
= supKi(T), Kmid

i (T)
def
= (K⊥i (T) +K>i (T))/2 .

For the same reason as Footnote 13 on page 53 in the main paper, we assume

without loss of generality that for each T , the minimum/maximum point in Ki(T)

exists. That is, K⊥i (T)
def
= minKi(T) and K>i (T)

def
= maxKi(T).

We first note that Claim 2.7 continues to hold:23

Claim 2.7. Let vi be a strategy of player i such that vi(T) = Kmid
i (T) for each non-

empty T ⊆ [M]. Then Ri(Ki, vi) ≤ δ.

We now prove some properties about an arbitrary (possibly mixed) strategy σi of

player i with regret ≤ δ.

Player Underbidding

22A more careful analysis leads to O(n log n · δ).
23We note that when mixed strategies are allowed, one can find a strategy with regret δ/2, therefore

bidding the mid-points, having a regret δ, is no longer a regret-minimizing strategy. Since the
remaining proof of Theorem 2.2′ only requires to know that ‘the regret-minimizing strategy has a
regret O(δ)’, it suffices to analyze the mid-points, losing a constant factor of 2.

75

We first show a variant of Claim 2.8a from the main paper. It is a probabilistic bound

on how a player i may underbid on each of his 2m − 1 coordinates:

Claim 2.26 (player underbidding). Let σi be a (possibly mixed) strategy of player i

such that Ri(Ki, σi) ≤ δ. Then, for any non-empty subset T ⊆ [M], and any real

number t ≥ 1,

Pr
vi∼σi

[
K>i (T)−max

T ′⊆T
vi(T

′) > t · δ
]
≤ 1

t
.

Proof. Suppose the claim is not true. Then, there exists T such that

Pr
vi∼σi

[
K>i (T)−max

T ′⊆T
vi(T

′) > t · δ
]
>

1

t
. (2.26)

We contradict our assumption on vi by showing Ri(Ki, σi) > δ.

To show Ri(Ki, σi) > δ, as per (2.25), we must find some v−i and some θi so that

MSW
(
θi, v−i

)
− Evi∼σi

[
SW
(
(θi, v−i),VCG(vi, v−i)

)]
> δ (2.27)

Let j be an arbitrary player other than i. We choose θi ∈ Ki such that θi(T) = K>i (T)

and v−i as follows: for every S ⊆ [m]

vj(S)
def
=


H if S = T

H + (K>i (T)− t · δ) if S = [M]

0 otherwise

and vk(S)
def
= 0 for every k 6∈ {i, j}.

Above, H is some huge real number (i.e., much bigger than vi(S) for any subset S).24

Recall that (2.26) tells us that, with probability more than 1
t

over the choice

of vi from σi, the event K>i (T) − maxT ′⊆T vi(T
′) > t · δ occurs. Let us denote by

Event(vi) this event, and it is not hard to verify that Event(vi) implies that the

outcome VCG(vi, v−i) must allocate ∅ to player i, and [M] to player j. Therefore,

with probability more than 1
t
, we have

SW
(
(θi, v−i),VCG(vi, v−i)

)
= θi(∅) + v−i([m]) = H +K>i (T)− t · δ .

On the other hand, MSW(θi, v−i) ≥ θi(T) + v−i(T) = K>i (T) +H, and therefore

Evi∼σi
[
MSW

(
θi, v−i

)
− SW

(
(θi, v−i),VCG(vi, v−i)

)]
≥ Pr

vi∼σi
[Event(vi)] · Evi∼σi

[
MSW(θi, v−i)− SW

(
(θi, v−i),VCG(vi, v−i)

)∣∣∣Event(vi)
]

>
1

t
·
(
K>i (T) +H −

(
H + (K>i (T)− t · δ)

))
= δ .

This proves (2.27) and concludes concludes the proof of Claim 2.26. �

We remark here that the above proof matches our high level description in Appendix 2.D.1.

That is, since a player may have different valuations on all of his 2m− 1 coordinates,

24Notice that when T = [M] we have T = ∅, and one cannot assign vj(∅) to be a nonzero number.
In that case, we can choose H = 0 and vj remains well-defined, since we must have K>

i (T)− t ·δ > 0
(as otherwise K>

i (T)−maxT ′⊆T vi(T
′) > t · δ cannot hold, contradicting our assumption). The rest

of the proof still goes through.

76

he may choose to independently underbid each of his 2m− 1 coordinates according to

Claim 2.27 (which is tight, due to an example generalizing (2.24) to allow multiple

goods). If so, with constant probability (using union bound), he may underbid by

O(2mδ) on one of his 2m − 1 coordinates.

Could this large underbidding destroy the social welfare by O(2mδ)? Our answer

is No (as we shall formally explain later) because, if, in the maximum social welfare

allocation, player i receives a subset Bi ⊆ [M] of the goods, all we need to learn

from the player’s underbidding is: how much will player i underbid on coordinate Bi?

Therefore, we do not care how much he underbids on other coordinates, and therefore

this 2m factor does not show up in the social welfare loss.

Player Overbidding

The overbidding case is much harder. In fact, one can (essentially) show a similar

coordinate-wise argument as in Claim 2.26, and conclude that a player will overbid

on each of his coordinates by at most t · δ, with probability at most 1
t
. Via a union

bound, this implies that, with constant probability, he may overbid by O(2mδ) on one

of his 2m − 1 coordinates. If this happens, unlike the underbidding case, the social

welfare performance will be very poor. The following example illustrates this point.

Example. Consider a 2-player auction with m goods, where m is even. The first

player is only interested in the subsets of [m] that have cardinality m/2, and his

value for each such subset lies in the interval [x, x+ δ]. The second player is only

interested in the set of all goods, [m], which he values precisely x+ (
(
m
m/2

)
− 1)δ.

Notice that the maximum social welfare in this setting is x+ (
(
m
m/2

)
− 1)δ. Also

notice that, in such an auction, at most one player ‘wins’. That is, at most one

player can be allocated a subset of [m] which he positively values.

Now suppose that player 2 reports his true valuation, while player 1 overbids

as follows. Let t =
(
m
m/2

)
. For each of the t subsets he is interested in, player

1 reports, independently and with probability 1/t, the value x + t · δ, and x

otherwise. (For each subset he is not interested in, player 1 reports 0.) Then,

with constant probability, player 1 reports x+ t · δ on one of his coordinates, and

thus ‘wins’ the auction. Note that, when player 1 ‘wins’, the social welfare is at

most x+ δ and misses the maximum social welfare by (t− 2) · δ = Ω̃(2mδ).

Therefore, to prove a good social-welfare performance, it is not advisable to bound a

player’s overbidding coordinate-wise. In fact, we prove the following claim, which is

significantly different from what we showed in Claim 2.8b for the pure case. The new

claim essentially bounds how a player i may overbid (on all coordinates) with respect

to a given mixed strategy sub-profile σ−i of his opponents. Since we will eventually

be interested in only one particular σ−i —namely, the one when all players other

than i are playing regret-minimizing strategies— we do not need to pay for the extra

O(2mδ) loss in the union bound.

77

Claim 2.27 (player overbidding). Let σi be a (possibly mixed) strategy of player i

such that Ri(Ki, σi) ≤ δ, σ−i an arbitrary (possibly mixed) strategy sub-profile of his

opponents, and θi ∈ Ki his possible true valuation. Then, for any real number t ≥ 1,

Pr
vi∼σi

v−i∼σ−i

[
vi
(
VCG(vi, v−i)

)
> θi

(
VCG(vi, v−i)

)
+ 4t · δ

]
≤ 1

t
. (2.28)

Proof. Suppose the claim is not true and there are choices of σi, σ−i, and θi, such

that the above probability is strictly larger than 1
t
. We denote by Event1(vi, v−i)

the probabilistic event that vi
(
VCG(vi, v−i)

)
> θi

(
VCG(vi, v−i)

)
+ 4t · δ, and we want

to show that if Pr[Event1] > 1
t
, then Ri(Ki, σi) > δ, contradicting our assumption

on σi. To achieve this, we lower bound (2.25) (using the same choice of θi provided

in the assumption of this claim) by a probabilistic form:

Ri(Ki, σi) ≥ Ev∗−i∼σ∗−i
[
MSW

(
θi, v

∗
−i
)
− Evi∼σi

[
SW
(
(θi, v

∗
−i),VCG(vi, v

∗
−i)
)]]

. (2.29)

Now it suffices to choose a witness distribution σ∗−i so that the right-hand side is

larger than δ.

We choose σ∗−i as follows. It is reconstructed from the distribution σ−i given in

the assumption, with every occurrence of v−i ∼ σ−i replaced by v∗−i with the same

probability, where v∗−i is defined as:

∀j 6= i ∀S ⊆ [m] v∗j (S)
def
=

{
MSW(θi, v−i) + 2t · δ if S = [M]

vj(S) otherwise
.

Now assuming, by way of contradiction, that the desired regret term Ri(Ki, σi) ≤
δ, which implies (using (2.25) for v−i drawn from σ−i):

Ev−i∼σ−i
[
MSW

(
θi, v−i

)
− Evi∼σi

[
SW
(
(θi, v−i),VCG(vi, v−i)

)]]
≤ Ri(Ki, σi) ≤ δ .

Using Markov bound, with probability at least 1/2t over the choices of vi ∼ σi and

v−i ∼ σ−i, we have

MSW
(
θi, v−i

)
− SW

(
(θi, v−i),VCG(vi, v−i)

)
≤ 2t · δ

We denote by Event2(vi, v−i) the probabilistic event such that the above inequality is

true. From (2.28), we know that with probability strictly larger than 1/t−1/2t = 1/2t

we have that both Event1 and Event2 happen, and therefore

vi
(
VCG(vi, v−i)

)
> θi

(
VCG(vi, v−i)

)
+ 4t · δ (using Event1)

=⇒ vi
(
VCG(vi, v−i)

)
+ v−i

(
VCG(vi, v−i)

)
> θi

(
VCG(vi, v−i)

)
+ v−i

(
VCG(vi, v−i)

)
+ 4t · δ

=⇒ SW
(
(vi, v−i),VCG(vi, v−i

)
> SW

(
(θi, v−i),VCG(vi, v−i)

)
+ 4t · δ

=⇒ MSW(vi, v−i) > SW
(
(θi, v−i),VCG(vi, v−i)

)
+ 4t · δ

=⇒ MSW(vi, v−i) > MSW(θi, v−i) + 2t · δ (using Event2)

=⇒ MSW(vi, v−i) > v∗j ([M]) (∀j 6= i, using the definition of v∗−i .)

The last strict inequality implies that the allocation under VCG(vi, v−i) must be the

same as VCG(vi, v
∗
−i). This is because v∗−i is only different from v−i on the coordinates

78

[M] for players j 6= i, but those coordinates only incur a smaller social welfare than

VCG(vi, v−i) according to the last inequality above.

In sum, we have that MSW(θi, v
∗
−i) ≥ v−i([M]) = MSW(θi, v−i) + 2t · δ; however,

under Event1∧Event2, the obtained social welfare can be upper bounded as follows:

SW
(
(θi, v

∗
−i),VCG(vi, v

∗
−i)
)

= SW
(
(θi, v

∗
−i),VCG(vi, v−i)

)
= SW

(
(θi, v−i),VCG(vi, v−i)

)
≤ MSW(θi, v−i) ≤ MSW(θi, v

∗
−i)− 2t · δ .

Above, the first equality is because VCG(vi, v−i) produces the same allocation as

VCG(vi, v
∗
−i); the second equality is because VCG(vi, v

∗
−i) never gives all the goods to

a player j 6= i; and the first inequality is because, by definition, the VCG maximizes

social welfare.

Now we go back to (2.29), and show that Ri(Ki, σi) > δ:

Ri(Ki, σi) ≥ E vi∼σi
v∗−i∼σ∗−i

[
MSW

(
θi, v

∗
−i
)
− SW

(
(θi, v

∗
−i),VCG(vi, v

∗
−i)
)]

≥ Pr
vi∼σi

v∗−i∼σ∗−i

[Event1 ∧Event2]×

E vi∼σi
v∗−i∼σ∗−i

[
MSW

(
θi, v

∗
−i
)
− SW

(
(θi, v

∗
−i),VCG(vi, v

∗
−i)
)∣∣∣Event1 ∧Event2

]
>

1

2t
× 2t · δ = δ .

The above conclusion contradicts our assumption that the regret of the mixed strategy

σi is at most δ. This concludes the proof of the claim. �

Putting It All Together

Now we go back to the proof of Theorem 2.2. Let σ = (σ1, . . . , σn) ∈ RMmix(K)

be a profile of regret-minimizing mixed strategies, and let θ ∈ K be any valuation

profile. Since there exists a strategy with regret ≤ δ for each player (see Claim 2.7),

we must have Ri(Ki, σi) ≤ δ to satisfy the assumption of Claim 2.26 and 2.27.

Now, letting (B0, B1, . . . , Bn) be the allocation that maximizes the social welfare

under θ, we are ready to compute the social welfare guarantee. For any choice of

v ∼ σ, let Xi denote the non-negative probabilistic variable equal to the difference

vi
(
VCG(v)

)
− θi

(
VCG(v)

)
; according to Claim 2.27, we have Pr[Xi > 4tδ] < 1

t
. Also

let Yi denote the non-negative probabilistic variable equal to the difference K>i (Bi)−
maxT ′⊆Bi vi(T

′), and, according to Claim 2.26 (for the choice of T = Bi), we have

Pr[Yi > tδ] ≤ 1
t
.

SW(θ,VCG(v)) =
n∑
i=1

θi(VCG(v)) =
n∑
i=1

vi(VCG(v))−
n∑
i=1

Xi

≥
n∑
i=1

max
T ′⊆Bi

vi(T
′)−

n∑
i=1

Xi (because the VCG maximizes social welfare under v)

79

=
n∑
i=1

K>i (Bi)−
n∑
i=1

(Xi + Yi)

≥
n∑
i=1

θi(Bi)−
n∑
i=1

(Xi + Yi) = MSW(θ)−
n∑
i=1

(Xi + Yi) .

We are now left to bound
∑n

i=1(Xi + Yi). For any p ≥ 1 and each choice of i ∈ [n],

with probability at least 1− 1
2np

, we have that Xi ≤ (8np)δ, and, with probability at

least 1 − 1
2np

, Yi ≤ (2np)δ. Using union bound, with a total probability of at least

1 − 1
p

(over the choices of v from σ), we have Xi ≤ (8np)δ and Yi ≤ (2np)δ for all

i ∈ [n]. In such a case the above difference satisfies

SW(θ,VCG(v)) ≥ MSW(θ)−O(n2p) · δ .

This concludes the proof of Theorem 2.2′. �

80

Chapter 3

Bridging Utility Maximization and

Regret Minimization

We relate the strategy sets that a player ends up with after refining his own strategies

according to two very different models of rationality: namely, utility maximization

and regret minimization.

3.1 Introduction
Rational players have been modeled in two main ways.

• A utility-maximizing player U eliminates all his dominated strategies to compute

his set of undominated ones, UD. Notice that U cannot further refine UD based on

utility maximization. If UD consists of a single strategy s (necessarily a dominant

one), then U of course chooses s. But, if UD contains multiple strategies, which

one should U choose?

• A regret-minimizing player R eliminates all his non regret-minimizing strategies

so as to compute his set of regret-minimizing strategies, RM. He might even

continue this process k times, until he is satisfied or no further elimination is

possible. Let us denote the final set of strategies he obtains this way by RMk. If

RMk consists of a single strategy s, R of course chooses s. But, if RMk contains

multiple strategies, which one should R choose?

In both cases, “a random strategy” or “the lexicographic first strategy” are certainly

possible answers. But another answer is that, when he is ‘no longer able to apply

his favorite way of reasoning’, even a die-hard utility maximizer U will resort to

regret minimization to refine UD, and even a die-hard regret minimizer R will resort

to utility maximization to refine RMk. In principle, the two final sets of strategies

obtained by such different refinement procedures could be vastly different. Our next

structural theorem, however, guarantees that they coincide.

Abusing notation a bit, consider UD and RM also to be “operators” acting on

sets of strategies. In this case UD(UD) = UD, while RM2 def
= RM(RM) may be a strict

81

subset of RM. Then, we prove that the set of strategies obtained after applying, in

arbitrary order, k times the operator RM and at least once the operator UD coincides

with RMk ∩ UD. For instance,

RM(RM(UD(RM(RM(UD))))) = RM4(UD) = RM4 ∩ UD.

After recalling the relevant notions, we prove our theorem for pure strategies, and

then point out its simple but interesting implications for mechanism design. Finally,

we point out that our result extends to mixed strategies as well.

We recall that regret-minimizing strategies are also known as regret-minimax

strategies. The suggestion of adopting regret-minimizing strategies traces back to

Savage’s reading [138] of the work of Wald [161], and has been axiomatized by

Milnor [109]. The notion of regret has been treated differently in different settings.

A unified axiomatic characterization of minimax regret has been recently given by

Stoye [155].

Many empirical studies compare utility maximizers and regret minimizers, see

for instance Chorus, Arentze and Timmermans [45], and Hensher, Greene and Cho-

rus [75]. Recently, Engelbrecht-Wiggans and Katok [59] and Filiz and Ozbay [62]

provide experimental evidence for regret in first- and second-price auctions.

To the best of our knowledge, we are the first to study players who use regret for

refining their sets of undominated strategies.

3.2 Basic Notions

To state and prove our result, we use the language of decision theory: namely, envis-

aging “a single player against Nature”.1

Let S be a compact set of (pure) strategies of the player, and T a compact set

of states of Nature.2 We denote by U the (continuous) utility function of the player,

where U(s, t) is the utility under strategy s ∈ S when Nature’s state is t ∈ T . Regret-

minimizing strategies and undominated strategies are defined as follows:

• Given a menu S ⊆ S of strategies, the player’s (maximum) regret for a strategy

s ∈ S in menu S, denoted by RS(s), is the maximum difference, taken over all

possible Nature’s states t ∈ T , between the utility the player gets by playing s, and

that he could have gotten by “best responding” to t; formally,

RS(s)
def
= max

t∈T

(
max
s∗∈S

U(s∗, t)− U(s, t)
)
.

Therefore, the regret-minimizing strategies with respect to a menu S ⊆ S, denoted

1Results for n-player (strategic or pre-Bayesian) games follow as corollaries. This is because the
definitions of dominance and regret are universally quantified over other players’ strategies, which
can be treated as Nature’s strategies.

2Both S and T may be infinite, and S may be convex in order to allow arbitrary mixed strategies
to be considered.

82

by RM(S), is the set of strategies that minimize the regret:

RM(S)
def
= arg min

s∈S
RS(s).

• Given two strategies s, s′ ∈ S, by definition s′ weakly dominates s, denoted by

s′ � s, if

∀t ∈ T, U(s′, t) ≥ U(s, t) and ∃t ∈ T, U(s′, t) > U(s, t) .

Given a menu S ⊆ S of strategies, the player’s undominated strategies consist

of those that are not weakly dominated by any weakly undominated strategy.3

Formally,

UD(S)
def
= S \ {s ∈ S : ∃s′ ∈ S s.t. (s′ � s) ∧ (@s′′ ∈ S, s′′ � s′)}
= {s ∈ S : @s′ ∈ S s.t. (s′ � s) ∧ (@s′′ ∈ S, s′′ � s′)}.

We now state two simple facts which easily follow from the above definitions:

Fact 3.1. For any menu S̃ ⊆ S,

(a) if s ≺ s′ for some s, s′ ∈ S̃, then RS̃(s) ≥ RS̃(s′), and

(b) the regret values of a strategy with respect to S̃ and UD(S̃) are the same,

namely:4

RS̃(s) = max
t∈T

(
max
s∗∈S̃

U(s∗, t)−U(s, t)
)

= max
t∈T

(
max

s∗∈UD(S̃)
U(s∗, t)−U(s, t)

)
= RUD(S̃)(s) .

Note that regret minimization is mostly studied when a player has beliefs about his

opponents. In particular, the notions from Hyafil and Boutilier [76] and Renou and

Schlag [134] coincide with ours when the players do not form beliefs about their

opponents —or, in our language, Nature.

3.3 Result
Established our language, we prove our theorem as a corollary of the following lemma.

Lemma 3.2. For any menu S ⊆ S, UD(RM(S)) = RM(UD(S)) = RM(S) ∩ UD(S).

Proof. We divide the proof into six steps:

1. RM(UD(S)) ⊆ RM(S).

3In general, weakly undominated strategies do not coincide with undominated ones. As argued
by Jackson [79], it may happen that every pure strategy is weakly dominated by another one in an
infinite chain, and in such a case all strategies are undominated but weakly dominated. However,
in many cases of interest (e.g., when the set of pure strategies is finite, or when the mechanism is
bounded), weakly undominated strategies coincide with undominated ones.

4The equality in the middle is since any strategy s∗ ∈ S̃ \ UD(S̃) must be weakly dominated by
some s∗∗ ∈ S̃, giving at least as good utilities as s∗ for any t ∈ T . Therefore, such choices of s∗∗

can be ignored in the inner max.

83

For any s ∈ RM(UD(S)), we show that s ∈ RM(S) by proving that s has minimum

regret among all strategies in S. Indeed:

• For any other strategy s′ ∈ UD(S), it holds that RUD(S)(s) ≤ RUD(S)(s
′). By

Fact 3.1b, we deduce that RS(s) ≤ RS(s′).

• For any other strategy s′ ∈ S \ UD(S), it holds that s′ ≺ s′′ for some s′′ ∈
UD(S) and RS(s) ≤ RS(s′′). By Fact 3.1a, we deduce that RS(s) ≤ RS(s′′) ≤
RS(s′).

2. RM(UD(S)) ⊆ UD(RM(S)).

Given that RM(UD(S)) ⊆ RM(S) (proved above), if there is some s ∈ RM(UD(S))

with s 6∈ UD(RM(S)), then s must be weakly dominated by some other strategy

s′ ∈ RM(S), namely s ≺ s′, but s′ cannot be weakly dominated by any other

strategy in RM(S), by definition of UD.

Now we show that s′ cannot be weakly dominated by any strategy in S as well.

Suppose not, that is s′ ≺ s′′ where s′′ ∈ S. Then s′′ 6∈ RM(S) as we have just

argued. However, using Fact 3.1a we have RS(s′) ≥ RS(s′′), implying that s′′ ∈
RM(S) since s′ ∈ RM(S), giving a contradiction to s′′ 6∈ RM(S).

In sum, we showed that s is weakly dominated by s′ ∈ S, and in addition s′ cannot

be weakly dominated by any strategy in S, contradicting the fact that s ∈ UD(S).

3. UD(RM(S)) ⊆ UD(S).

Suppose not, that is, there exists some s ∈ UD(RM(S)) that is not in UD(S). By

the definition of UD(S), the strategy s must be weakly dominated by some s′ ∈ S,

and in addition s′ cannot be weakly dominated by any other strategy in S. There

are two cases here.

• The first case is when s′ ∈ RM(S). This case is impossible because s ∈
UD(RM(S)) implies that if s is weakly dominated by s′ ∈ RM(S), then s′

must also be weakly dominated, contradicting the fact that s′ cannot be

weakly dominated by any strategy in S.

• The second case is when s′ 6∈ RM(S). Since s ≺ s′, by Fact 3.1a we have

RS(s) ≥ RS(s′). However, because s ∈ UD(RM(S)) implies that s ∈ RM(S),

it must hold that s′ is a regret minimizer with respect to S, contradicting the

fact that s′ 6∈ RM(S).

4. UD(RM(S)) ⊆ RM(UD(S)).

Given that UD(RM(S)) ⊆ UD(S) (proved above), consider any strategy s ∈
UD(RM(S)), and suppose that s 6∈ RM(UD(S)). Then there exists some s′ ∈
UD(S) satisfying RUD(S)(s) > RUD(S)(s

′). This implies, through Fact 3.1b, that

RS(s) > RS(s′), contradicting the fact that s ∈ RM(S).

84

5. RM(UD(S)) ⊆ RM(S) ∩ UD(S).

Trivial given the previous steps: RM(UD(S)) ⊆ UD(S) and RM(UD(S)) = UD(RM(S)) ⊆
RM(S).

6. RM(S) ∩ UD(S) ⊆ RM(UD(S)).

Take any strategy s ∈ RM(S) ∩ UD(S), and suppose that s 6∈ RM(UD(S)). Then

there exists some s′ ∈ UD(S) satisfying RUD(S)(s) > RUD(S)(s
′). This implies,

through Fact 3.1b, that RS(s) > RS(s′), contradicting the fact that s ∈ RM(S).

�

It is not hard to see that Lemma 3.2 implies our theorem. That is,

Theorem 3.3. From any menu S ⊆ S, the set of strategies obtained by applying, in

arbitrary order, i times the operator RM and at least once the operator UD, is:

RMi(S) ∩ UD(S) .

3.4 Implications for Mechanism Design

Mechanism design enables a social planner to generate a desirable outcome by lever-

aging the rationality (and the beliefs) of the players. Most works in mechanism

designs assume the players to be utility maximizers. In particular, implementation

in undominated strategies traces back to Jackson [79]. However, mechanism de-

sign also considers regret minimizers. In particular, Linhart and Radner [98] study

regret-minimizing strategies in a sealed-bid mechanism for bilateral bargaining under

complete information. Engelbrecht-Wiggans [58] and Selten [140] analyze first- and

second-price sealed-bid auctions by incorporating regret for the bidders. Halpern and

Pass [71] propose the solution concept of iterated regret minimization using beliefs,

and argue that it actually is the only one capable of explaining the actual behavior

of the players in some settings.

If a mechanism ensures that each player has a unique undominated strategy, then

that strategy is also dominant, and thus the only regret-minimizing one. However, it

is not always possible to design such mechanisms. The designer of a new mechanism

M may never be sure that M will be played solely by utility-maximizing players, nor

that it will be played solely by regret-minimizing players. In principle, if he designs

M so that it implements a social choice correspondence f in undominated strategies,

then M might produce a non desired outcome when one of the players is a regret

minimizer, and viceversa.

We wish to quickly point out that Theorem 3.3 has an immediate but reassuring

consequence for mechanism design.

85

Assume that a mechanism M implements a social choice correspondence f

whenever each player chooses a strategy is a strategy subset that coincides ei-

ther with RM or with UD. Then M is automatically guaranteed to implement

f whenever each player chooses a strategy in his set RM(UD).

For instance, a mechanism implementing f for regret minimizers continues to imple-

ment f when the players are utility maximizers who resort to regret only for further

refining, if needed, their sets of undominated strategies.

3.5 Pure vs. Mixed Strategies
So far we have been ambiguous, when discussing undominated strategies and regret-

minimizing ones, about whether or not the players consider only pure strategies or also

mixed ones. When only pure strategies are allowed, a utility maximizer compares only

between his pure strategies for the notion of dominance and plays a pure undominated

one, while a regret minimizer picks a pure strategy that minimizes regret among his

pure strategies.

Our theorem and lemma are stated for pure strategies.

When mixed strategies are allowed, the definitions of UD and RM need more

careful attention. It is easy to see that, when considering mixed strategies for regret

minimizers, the only change needed is to allow such a minimizer to choose a mixed

strategy that minimizes his expected regret among all his mixed ones (see e.g., [76,

71]). Note that, it is easy to construct examples in which a mixed strategy yields

strictly smaller regret than any pure strategy.

It is important to realize, however, that if we allow regret minimizers to consider

mixed strategies, we should also allow utility maximizers to consider mixed strategies.

For instance, our structural lemma (Lemma 3.2) would have difficulty to equate a set

of pure strategies and a set of mixed ones. A utility maximizer may consider mixed

strategies when determining that a strategy s is weakly dominated by another strategy

s′. The two interesting cases to consider are (1) s is pure and s′ is mixed; and (2)

both s and s′ are mixed. Traditionally, most attention has been devoted to the first

case, but the second has been studied too (see for instance [48, 134]). Clearly, UD can

be defined in both cases, and yields a more “refined” set of strategies in the second

case.5 It is actually under this more refined case that our structural lemma holds. In

a sense, we have nothing to lose and something to gain by adopting a more flexible

definition, after all the right notions are those yielding the right theorems.

5Let UDpure be the set of (pure) undominated strategies in the first case, and UD be the set of
(possibly mixed) undominated strategies in the second case. Then, UD is a more “refined” notion of
undominated strategies than UDpure because UDpure ⊆ UD ⊆ ∆(UDpure), i.e., UDpure coincides with
the support of UD. For this reason, there is no difference in choosing between the two notions in
most of the literature (see [48, footnote 2]).

86

Part II

Novel Frameworks for

Optimization

87

THIS PAGE INTENTIONALLY LEFT BLANK

88

Chapter 4

Linear Coupling: An Ultimate

Unification of Gradient and Mirror

Descent

This chapter is based on the result published in [5], and its further edits

can be found at:

http: // arxiv. org/ abs/ 1407. 1537 .

First-order methods play a central role in large-scale convex optimization. Even

though many variations exist, each suited to a particular problem form, almost all

such methods fundamentally rely on two types of algorithmic steps and two corre-

sponding types of analysis: gradient-descent steps, which yield primal progress, and

mirror-descent steps, which yield dual progress. In this paper, we observe that the

performances of these two types of step are complementary, so that faster algorithms

can be designed by linearly coupling the two steps.

In particular, we obtain a simple accelerated gradient method for the class of

smooth convex optimization problems. The first such method was proposed by Nes-

terov back to 1983 [116, 117, 118], but to the best of our knowledge, the proof of the

fast convergence of accelerated gradient methods has not found a clear interpretation

and is still regarded by many as crucially relying on “algebraic tricks”[87]. We apply

our novel insights to construct a new accelerated gradient method as a natural linear

coupling of gradient descent and mirror descent and to write its proof of convergence

as a simple combination of the convergence analyses of the two underlying descent

steps.

We believe that the complementary view and the linear coupling technique in

this paper will prove very useful in the design of first-order methods as it allows us

to design fast algorithms in a conceptually easier way. For instance, our technique

greatly facilitates the recent breakthroughs in solving packing and covering linear

programs [7, 6].

89

http://arxiv.org/abs/1407.1537

4.1 Introduction

The study of fast iterative methods for approximately solving linear programs and,

more generally, convex programming problems is a central focus of research in con-

vex optimization, with important applications in Machine Learning, Combinatorial

Optimizations and many other areas of Computer Science and Mathematics. The

crowning jewel of this field of research has been the development of interior point

methods, iterative methods that produce ε-additive approximations to the optimum

with a small number of iterations and a logarithmic log
(

1
ε

)
dependence on the accu-

racy ε.

The fast rate of convergence of interior point methods comes at the cost of more

expensive iterations, typically requiring the solution of a system of linear equations

in the input variables. As a consequence, the cost of each iteration typically grows

at least quadratically with the problem dimension, making interior point methods

impractical for very-large-scale convex programs where the problem dimension is on

the magnitude of millions or billions [27]. In such a regime, the methods of choice are

first-order algorithms. These are modeled as accessing the target convex-optimization

problem minx∈Q f(x) in a black-box fashion: the algorithm queries a point y ∈ Q at

every iteration and receives the pair
(
f(y),∇f(y)

)
.1 The convergence of the algorithm

is measured in the number of queries necessary to produce a feasible solution which

achieves an additive ε-approximation to the optimum.

Because of the restricted interaction with the input, first-order methods only re-

quire very cheap and often highly parallelizable iterations, which makes them well-

suited to massive optimization problems. At the same time, first-order methods often

require a number of iterations inversely polynomial to the accuracy ε, i.e. exponen-

tially larger than required by interior-point algorithms.

Recently, first-order methods have experienced a renaissance in the design of fast

algorithms for fundamental combinatorial problems. In particular, gradient-descent

techniques play a crucial role in recent breakthroughs on the complexity of approx-

imate maximum flow problems [94, 150, 88, 104]. At the same time, multiplicative

weight updates, another first-order method and a cornerstone technique in online

learning, have become a standard tool in the design of fast algorithms and have been

applied with success to a variety of problems, including approximately solving linear

and semidefinite relaxations of fundamental combinatorial problems [131, 65, 9, 10]

as well as spectral algorithms for graph problems [46, 126].

Despite the myriad of applications, first-order methods with provable convergence

guarantees can be mostly classified as instantiations of two fundamental algorithmic

1Here, variable x is constrained to lie in a convex set Q ⊆ Rn, which is known as the constraint
set of the problem.

90

ideas: gradient descent and the mirror descent.2

A method with provable guarantees must provide both a solution xout and an

implicit or explicit certificate that xout in the form of a lower bound on the optimum.

We refer to the task of constructing a solution xout of small objective as the primal

side of the problem and to that of constructing a lower bound on the optimum as the

dual side.

We will argue that gradient descent takes a fundamentally primal approach, while

mirror descent follows a complementary dual approach. In our main result, we will

show how these two approaches blend in a natural manner to yield a new and simple

accelerated gradient method for smooth convex optimization problems.

4.1.1 Understanding First-Order Methods: Gradient Descent

and Mirror Descent

In this section, we provide high-level descriptions of the gradient-descent and the

mirror-descent algorithms and their analysis. While much of this material is classical

in the field of optimization, our intuitive presentation of these ideas forms the basis for

our main result. For a more detailed survey of gradient descent and mirror descent,

we recommend the textbooks [117, 27].

For the purpose of this section, we only consider the case of unconstrained mini-

mization (i.e. Q = Rn), but, as we will see in Section 4.2, the same intuition and a

similar analysis extend to the constrained case. In the following, we will also be using

generic dual norms ‖ · ‖ and ‖ · ‖∗. At a first reading, they can be both replaced with

the Euclidean norm ‖ · ‖2.

Primal Approach: Gradient Descent for Smooth Convex Optimization

A natural approach to iterative optimization is to decrease the objective function as

much as possible at every iteration. To formalize the effectiveness of this idea, one

has to introduce an additional smoothness assumption on the objective function f(x);

specifically, this is achieved by considering the class of objectives that are L-smooth

(i.e., that have L-Lipschitz continuous gradient):

∀x, y, ‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖ .
The smoothness condition immediately yields a global quadratic upper bound on the

function around a query point x:

∀y, f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2 . (4.1)

2We emphasize here that these two terms are sometimes used ambiguosly in the literature; in this
paper, we attempt to stick as close as possible to the conventions of the Optimization community
and in particular in the textbooks [117, 27] with one exception: we extend the definition of gradient
descent to non-Euclidean norms in a natural way, following [88].

91

The gradient-descent algorithm exploits this bound by taking a step that maximizes

the guaranteed objective decrease (i.e., the primal progress) f(xk)− f(xk+1) at every

iteration k. More precisely,

xk+1 ← arg min
y

{L
2
‖y − xk‖2 + 〈∇f(x), y − xk〉

}
.

Notice that here ‖ · ‖ is a generic norm. When this is the Euclidean `2-norm, the step

takes the familiar additive form xk+1 = xk − 1
L
∇f(xk). However, in other cases, e.g.,

for the non-Euclidean `1 or `∞ norms, the update step will not follow the direction

of the gradient ∇f(xk) (see for instance [118, 88]).

Under the smoothness assumption above, the magnitude of this primal progress

is at least

f(xk)− f(xk+1) ≥ 1

2L
‖∇f(xk)‖2

∗ . (4.2)

In general, this quantity will be larger when the gradient ∇f(xk) has large norm.

Inequality (4.2) ensures that at every iteration the objective value of the current

solution xk decreases by at least 1
2L
‖∇f(xk)‖2

∗. The proof of convergence of gradient

descent is completed by using a basic convexity argument to relate f(xk) − f(x∗)

and ‖∇f(xk)‖∗ (where x∗ is the minimizer of f(x)). The final bound shows that the

algorithm converges to an ε-approximate solution in O
(
L
ε

)
iterations [117]. More

details on the gradient-descent algorithm and its analysis are given in Section 4.2.1

and in Nesterov’s book [117].

In conclusion, it is useful to think of gradient descent as choosing query points in

a greedy way to ensure the largest possible primal progress at every iteration. The

limitation of this strategy is that it does not make any attempt to construct a good

lower bound to the optimum value, i.e., it essentially ignores the dual problem. In the

next subsection, we will see a method that takes the opposite approach by focusing

completely on the dual side. This method is suitable when there is no guarantee on

the smoothness of the objective.

Dual Approach: Mirror Descent for Nonsmooth Convex Optimization

In non-smooth convex optimization, we are given an upper bound ρ on the Lipschitz

constant of f(x), rather than∇f(x). When f is differentiable, this means that the gra-

dient could change arbitrarily fast, but its norm remains bounded, i.e., ‖∇f(x)‖ ≤ ρ

for every x ∈ Q. The possibility that the gradient varies quickly seriously undermines

the performance of gradient descent, which relies on making a certain amount of pri-

mal progress at every iteration. In this case, it is not possible to guarantee that an

update step of a predetermined length would result in an improved objective value,

as the gradient may be very large even at points very near the optimum. At the same

time, we cannot afford to take too small steps as this limits our rate of convergence.

Dual-averaging methods (see for instance [114, 119, 56, 163, 27]) bypass this obsta-

cle by tackling the dual problem of constructing a lower bound to the optimum. They

92

interpret each queried gradient as a hyperplane lower bounding the objective function

f(x) and attempt to carefully construct a convex combination of these hyperplanes

that yields a stronger lower bound. Intuitively, the flatter the queried gradients are

(i.e. the smaller ‖∇f(xk)‖∗ ≤ ρ is), the fewer iterations will be needed to combine

them into an approximately optimal solution.

Formally, at each iteration k, using the convexity of f(x), we can consider the

following lower bound implied by the gradient ∇f(xk):

∀u, f(u) ≥ f(xk) + 〈∇f(xk), u− xk〉 .
To get a stronger lower bound, we can form a linear combination of the lower bounds

given by all the queried gradients, and obtain3

∀u, f(u) ≥ 1
T

∑T−1
t=0 f(xk) + 1

T

∑T−1
t=0 〈∇f(xk), u− xk〉 . (4.3)

On the upper bound side, we consider the point x̄ = 1
T

∑T−1
k=0 xk, i.e., the mean

of the queried points. By straightforward convexity argument, we have f(x̄) ≤
1
T

∑T−1
k=0 f(xk). As a result, we can upper bound the distance between f(x̄) and

f(u) for any arbitrary u using (4.3):

∀u, f(x̄)− f(u) ≤ 1
T

∑T−1
k=0 〈∇f(xk), xk − u〉

def
= RT (u) . (4.4)

Borrowing terminology from online learning, the righthand side RT (u) is known as

the regret of the sequence (xk)
T−1
k=0 with respect to point u.

Dual Averaging via Regularization: Mirror Descent. We are aware of two

main algorithmic instantiations of dual averaging: Nemirovski’s mirror descent [114]

and Nesterov’s dual averaging [119].4 Both these algorithm make use of a regularizer

w(·), also known as the distance-generating function (DGF), which is a strongly

convex function over Q with respect to some norm ‖ · ‖. The two methods are very

similar, differing only in how the constraint set is integrated in the update step [106].

In fact, they are exactly identical in the unconstrained case Q = Rn and, more

generally, when w(·) enjoys some nice properties (see Appendix 4.A.3). Below, we

focus on the unconstrained case.

Both algorithms consider a regularized version R̃k of the regret in (4.4):

R̃k(u)
def
=

1

αk
·
(
− w(u) + α

k−1∑
i=0

〈∇f(xi), xi − u〉
)
,

where α > 0 is a trade-off parameter. Notice that an upper bound on R̃k(u) can

be simply converted into one for Rk(u) with an additive loss: Rk(u) ≤ R̃k(u) +
w(u)
αk
. Both Nemirovski’s mirror descent and Nesterov’s dual averaging attempt to

3For simplicity, we choose uniform weights here. For the purpose of proving convergence results,
the weights of individual hyperplanes are typically uniform or only dependent on k.

4Several other update rules can be viewed as specializations or generalizations of the mentioned
instantiations. For instance, the follow-the-regularized-leader (FTRL) step is a generalization of
Nesterov’s dual averaging step where the regularizers are allowed to be adaptively and incrementally
selected (see [107]).

93

minimize the maximum regularized regret at the next iteration (i.e., maxu R̃k+1(u)),

by choosing the next query point xk to be the maximizer of the current regularized

regret (i.e., arg maxu R̃k(u)). It turns out that this choice of query point successfully

drives maxu R̃k+1(u) down. In fact, the smaller the queried gradient ∇f(xk) is, the

smaller the new maximum regularized regret maxu R̃k+1(u) will be. In general, one

can show that:

max
u

R̃k+1(u) ≤ k

k + 1
max
u

R̃k(u) +O
(α

k + 1
‖∇f(xk)‖2

∗

)
. (4.5)

This bound can then be turned into a convergence proof requiring T = O(ρ2/ε2)

iterations.

We remark that the convergence argument sketched here crucially relies on the use

of the regularized regret (instead of the original regret). In particular, Inequality (4.5)

directly follows from a smoothness property of the maximum regularized regret with

respect to the addition of new gradient hyperplanes, which only holds when the

regularizer w(u) is strongly convex. For more details of this view of dual averaging

and the proof of (4.5), see Appendix 4.A.4.

This paper. In this paper, we adopt mirror descent as our dual algorithm of choice,

as it is more familiar to the Theoretical Computer Science audience. Indeed, the most

common instantiation of mirror descent is perhaps the multiplicative-weight-update

algorithm, which has become a standard tool in the design of algorithms [10] (see

Appendix 4.A.2 for this relationship). We describe the mirror descent step for the

constrained case and its analysis in Section 4.2.2. A great resource for an in-depth

description of mirror descent is the textbook by Ben-Tal and Nemirovski [27].

Remark: A Few Exceptions

One may occasionally find analyses that do not immediately fall into the above two

categories. To name a few, Dekel et al. [52] have applied dual averaging steps to a

smooth objective, and shown that the convergence rate is the same as that of gradient

descent. Shamir and Zhang [148] have studied non-smooth objectives and obtained

an algorithm that converges slightly slower than dual averaging, but has an error

guarantee on the last iterate, rather than the average history.

4.1.2 Our Conceptual Question

Following this high level description of gradient and mirror descent, it is useful to

pause and observe the complementary nature of the two procedures. Gradient descent

relies on primal progress, uses local steps and makes faster progress when the norms of

the queried gradients ∇f(xk) are large. In contrast, mirror descent works by ensuring

dual progress, uses global steps and converges faster when the norms of the queried

gradients are small.

This interpretation immediately leads to the question that inspires our work:

94

Can Gradient Descent and Mirror Descent be combined to obtain faster first-order

algorithms?

In this paper, we initiate the formal study of this key conceptual question. We

believe that the techniques and insights to answer this question have the potential to

lead to faster and better motivated algorithms for many more computational prob-

lems.

4.1.3 Accelerated Gradient Method From Linear Coupling

In the seminal work [116, 117], Nesterov has designed an accelerated gradient method

for the class of L-smooth functions with respect to `2 norms, and this method performs

quadratically faster than gradient descent —requiring Ω(L/ε)0.5 rather than Ω(L/ε)

iterations. This is also shown to be asymptotically tight [117]. Later in 2005, Nesterov

himself generalizes this method to allow non-Euclidean norms in the definition of

smoothness [118]. All these versions of methods are referred to as accelerated gradient

methods, or sometimes as Nesterov’s accelerated methods.

Although accelerated gradient methods have been widely applied (to mention a

few, see [146, 147] for regularized optimizations, [121, 93] for composite optimization,

[120] for cubic regularization, [122] for universal method, and [94] for an application

on maxflow), little geometric explanation is known. For instance, Juditsky [87] has

mentioned that Nesterov’s method “looks as an analytical trick.”

In this paper, we provide a simple, alternative, but complete version of the

accelerated gradient method. Here, by ‘complete’ we mean our method works for

any norm, and for both the constrained and unconstrained case. This is in contrast

with the (perhaps better-known) version of Nesterov [117] that only works with the

`2 Euclidean norm.5

Instead of using the estimation sequence technique provided in the original proof of

Nesterov, we take a different path. Our key observation is to construct two sequences

of updates: one sequence of gradient steps and one sequence of mirror steps. Recall

that, according to the gradient-descent and mirror-descent analyses described above,

the gradient steps perform well whenever the observed gradients are large; the mirror

steps perform well whenever the observed gradients are small. Thus, intuitively, we

hope to couple these two steps together, and choose the better method ‘adaptively’

according to the size of the gradient. We begin with a thought experiment.

Thought Experiment. Consider the case when the smooth property is with respect

to the `2-norm, and the objective f(x) is unconstrained. Suppose that ‖∇f(x)‖2, the

5Some authors have regarded the result in [117] as the ‘momentum analysis’ or ‘momentum
method’ [123, 156]. To the best of our knowledge, all the momentum analysis only applies to
Euclidean spaces. We point out the importance of allowing non-Euclidean norms in Appendix 4.A.1.
(Our proof also extends to the proximal version of first-order methods, but for simplicity, we choose
to include only the constrained version.)

95

size of the observed gradient, is either always ≥ K, or always ≤ K, where the cut-off

value K is determined later. If ‖∇f(x)‖2 is always ≥ K, we perform T gradient

steps; otherwise we perform T mirror steps. Suppose in addition that we start with

some f(x0) whose distance to f(x∗) is at most 2ε, and we want to obtain some x so

that f(x)− f(x∗) ≤ ε.6

If T gradient steps are conducted, in each step the objective decreases by at least
‖∇f(·)‖22

2L
≥ K2

2L
according to (4.2), and thus we only need to choose T ≥ Ω(εL

K2) steps in

order to achieve an ε accuracy. On the other hand, if T mirror steps are conducted,

we need T ≥ Ω(K
2

ε2
) steps according to the mirror-descent convergence. In sum, in

this thought experiment, we need T ≥ Ω
(

max
{
εL
K2 ,

K2

ε2

})
steps to achieve a solution

ε-close to the optimum.

Now, setting K to be the ‘magic number’ so that the two terms in the max function

equal, we obtain T ≥ Ω
(
L
ε

)1/2
. This is a quadratic improvement over T ≥ Ω(L

ε
) from

the gradient descent.

Towards the Actual Proof. To turn this thought experiment into an actual

proof, we are facing the following obstacles. The gradient steps always decrease the

objective, while the mirror step may very often increase the objective, cancelling the

effect of the gradient steps. On the other hand, the mirror steps are only useful when

a large number of iterations are performed in a row, and the performance guarantee

is on the average of these iterations; if any primal step stands in the middle, this

guarantee is destroyed.

Therefore, it is natural to design an algorithm that, in every single iteration k,

performs both a gradient and a mirror step, and somehow ensure that the two steps

are coupled together. However, the following additional difficulty arises: if from some

starting point xk, the gradient step instructs us to go to yk, while the mirror step

instructs us to go to zk, then how do we continue? Do we look at the gradient at

∇f(yk) or ∇f(zk)? In particular, if ‖∇f(yk)‖2 is large, we can continue performing

gradient steps from yk; or if ‖∇f(zk)‖2 is small, we can continue performing mirror

steps from zk. However, what if ‖∇f(yk)‖2 is small but ‖∇f(zk)‖2 is large?

This problem is implicitly solved by Nesterov using the following simple idea7: in

the k-th step, we can choose a linear combination xk+1 ← τzk + (1 − τ)yk, and use

this same gradient ∇f(xk+1) to continue the gradient and mirror steps. Whenever τ

is carefully chosen (just like the ‘magic number’ K being selected), the two descent

sequences provide a coupled bound on the error guarantee, and we recover the method

of [118].

Finally, we point out that our method also recovers the strong convexity version

6It is worth noting that for first-order methods, the heaviest computation always happens in this
2ε to ε procedure.

7We wish to point out that Nesterov has phrased his method differently from ours, and little is
known on why this linear combination is needed from his proof, except for being used as an algebraic
trick to cancel specific terms.

96

of [117], and therefore is a full proof to all existing versions of accelerated gradient

methods for smooth convex optimization problems.

4.1.4 Conclusion

We provide a simple variant of the accelerated gradient method with a reinterpretation

of its convergence analysis. Providing such an intuitive, yet formal interpretation has

been a long-open question in Optimization [87]. We believe that our interpretation

is one important step towards this general goal, and may facilitate the study of

accelerated gradient methods in a white-box manner, so as to apply them to problems

outside its original scope.

In addition, we believe that our complementary view of gradient descent and mir-

ror descent is a very fundamental (and to the best of our knowledge, new!) conceptual

message in the design of first-order methods. This has the potential to lead to faster

and better motivated algorithms for many more computational problems. Indeed,

we have already succeeded in this direction in our separate papers [7, 6], where we

have proposed faster nearly-linear-time algorithms for approximately solving positive

linear programs, both in parallel and in sequential.8

4.2 Preliminaries

4.2.1 Review of Primal Descent

Consider a function f(x) that is convex and differentiable on a closed convex set

Q ⊆ Rn,9 and assume that f is L-smooth (or has L-Lipschitz continuous gradient)

with respect to ‖ · ‖, that is

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖, ∀x, y ∈ Q
where ‖ · ‖∗ is the dual norm of ‖ · ‖.10

Definition 4.1. For any x ∈ Q, the gradient (descent) step (with step length 1
L

) is

x̃ = Grad(x)
def
= arg miny∈Q

{
L
2
‖y − x‖2 + 〈∇f(x), y − x〉

}
8In our paper [7] (see Chapter 5), we have designed an iterative algorithm whose update steps can

be viewed both as gradient and as mirror steps, therefore allowing us to apply two complementary
analyses to support each other; this breaks the O(1/ε4) barrier in the parallel packing/covering LP
solver running time since [101].

In our paper [6] (see Chapter 6), we have designed algorithms whose update steps can be viewed
as linear couplings of (the coordinates version of) gradient and mirror steps; this breaks the O(1/ε2)
barrier in the sequential packing/covering LP solver running time since [24, 165, 25].

Neither of the two papers is any direct variant of accelerated gradient methods, and their objectives
are not even smooth.

9In most of the applications, Q is simple enough so that the gradient steps (and mirror steps
as well) can be computed explicitly and efficiently. For instance, one may use the positive orthant,
Q = {x ∈ Rn : x ≥ 0}, the unit sphere, Q = {x ∈ Rn : ‖x‖2 = 1}, and many others.

10‖ξ‖∗
def
= max{〈ξ, x〉 : ‖x‖ ≤ 1}. For instance, `p norm is dual to `q norm if 1

p + 1
q = 1.

97

and we let Prog(x)
def
= −miny∈Q{L2 ‖y − x‖

2 + 〈∇f(x), y − x〉} ≥ 0.

In particular, when ‖ · ‖ = ‖ · ‖2 is the `2-norm and Q = Rn is unconstrained,

the gradient step can be simplified as Grad(x) = x − 1
L
∇f(x). Or, slightly more

generally, when ‖ · ‖ = ‖ · ‖2 is the `2-norm but Q may be constrained, we have

Grad(x) = x − 1
L
gQ(x) where gQ(x) is the gradient mapping of f at x (see [117,

Chapter 2.2.3]).

The classical theory on smooth convex programming gives rise to the follow-

ing lower bound on the amount of objective decrease (whose proof is provided in

Appendix 4.B for completeness).

Gradient Descent Guarantee

f(Grad(x)) ≤ f(x)− Prog(x) (4.6)

or in the special case when Q = Rn f(Grad(x)) ≤ f(x)− 1

2L
‖∇f(x)‖2

∗ .

From the above descent guarantee, one can deduce the convergence rate of the

gradient descent steps. In particular, if ‖ · ‖ = ‖ · ‖2 is the Euclidean norm, and the

gradient step xk+1 = Grad(xk) is applied T times, we obtain the following convergence

guarantee (see [117, Chapter 2.1.5])

f(xT)− f(x∗) ≤ O
(L‖x0 − x∗‖2

2

T

)
or equivalently

T ≥ Ω
(L‖x0 − x∗‖2

2

ε

)
⇒ f(xT)− f(x∗) ≤ ε .

Here, x∗ is any minimizer of f(x). If ‖ · ‖ is a general norm, but Q = Rn is un-

constrained, the above convergent rate becomes f(xT) − f(x∗) ≤ O
(
LR2

T

)
, where

R = maxx:f(x)≤f(x0) ‖x−x∗‖. We provide the proof of this later case in Appendix 4.B

because it is less known and we cannot find it in the optimization literature.

Note that, we are unaware of any universal convergence proof for both the general

norm and the unconstrained case. As we shall see later in Section 4.4, this convergence

rate can be improved by accelerated gradient methods, even for the general norm ‖ ·‖
and the constrained case.

4.2.2 Review of Mirror Descent

Consider some function f(x) that is convex on a closed convex set Q ⊆ Rn, and

assume that f is ρ-Lipschitz continuous with respect to norm ‖ · ‖, that is

|f(x)− f(y)| ≤ ρ‖x− y‖, ∀x, y ∈ Q .

Notice that this is equivalent to saying that f admits a subgradient ∂f(x) at every

point x ∈ Q, and satisfies ‖∂f(x)‖∗ ≤ ρ for all x. (Recall that ∂f(x) = ∇f(x) if f is

differentiable.)

The mirror descent method requires one to choose a distance generating function.

98

Definition 4.2. We say that w(x) : Rn → R is a distance generating function (DGF),

if w is 1-strongly convex with respect to ‖ · ‖, or in symbols

w(y) ≥ w(x) + 〈∇w(x), y − x〉+
1

2
‖x− y‖2 ∀x ∈ Q \ ∂Q, ∀y ∈ Q .11

Accordingly, the Bregman divergence (or prox-term) is given as

Vx(y)
def
= w(y)− 〈∇w(x), y − x〉 − w(x) ∀x ∈ Q \ ∂Q, ∀y ∈ Q .

The property of DGF ensures that Vx(x) = 0 and Vx(y) ≥ 1
2
‖x− y‖2 ≥ 0.

Common examples of DGFs include (i) w(y) = 1
2
‖y‖2

2, which is strongly convex

with respect to the `2-norm over any convex set Q, and the corresponding Vx(y) =
1
2
‖x − y‖2

2, and (ii) the entropy function w(y) =
∑

i yi log yi, which is strongly

convex with respect to the `1-norm over any Q ⊆ ∆
def
= {x ≥ 0 : 1Tx = 1}, and the

corresponding Vx(y) =
∑

i yi log(yi/xi) ≥ 1
2
‖x− y‖2

1.

Definition 4.3. The mirror (descent) step with step length α can be described as

x̃ = Mirrx(α · ∂f(x)) where Mirrx(ξ)
def
= arg min

y∈Q

{
Vx(y) + 〈ξ, y − x〉

}
The core lemma of mirror descent is the following inequality. (Its proof can be

found in Appendix 4.B for completeness.)

Mirror Descent Guarantee

If xk+1 = Mirrxk
(
α · ∂f(xk)

)
, then

∀u ∈ Q, α(f(xk)−f(u)) ≤ α〈∂f(xk), xk−u〉 ≤
α2

2
‖∂f(xk)‖2

∗+Vxk(u)−Vxk+1
(u) .

(4.7)

The term 〈∂f(xk), xk−u〉 features prominently in online optimization (see for instance

the survey [143]), where it is known as the regret at iteration k with respect to u.12 It is

not hard to see that, after telescoping (4.7) for k = 0, . . . , T−1, letting x̄
def
= 1

T

∑T−1
k=0 xk

be the average of the xk’s, and letting x∗ be the minimizer of f(x), we have

αT (f(x̄)− f(x∗)) ≤
T−1∑
k=0

α〈∂f(xk), xk − x∗〉 ≤
α2

2

T−1∑
k=0

‖∂f(xk)‖2
∗+ Vx0(x

∗)− VxT (x∗) .

(4.8)

Finally, letting Θ be any upper bound on Vx0(x
∗), and α =

√
2Θ

ρ·
√
T

be the step length,

inequality (4.7) ensures that

f(x̄)− f(x∗) ≤
√

2Θ · ρ√
T

or equivalently T ≥ 2Θ · ρ2

ε2
⇒ f(x̄)− f(x∗) ≤ ε . (4.9)

Notice that Θ = 1
2
‖x0 − x∗‖2

2 when ‖ · ‖ is the Euclidean norm.

11One can in fact only require w to have subgradients at all x ∈ Q \ ∂Q.
12The notion of regret is especially used in the language of multiplicative weight update methods,

which can be viewed as mirror descent, see Appendix 4.A.2.

99

4.2.3 Remark

While their analyses share some similarities, mirror and gradient steps are often very

different. This is particularly true when working with non-Euclidean norms. For

example, if we consider an optimization problem over the simplex with underlying

norm `1-norm, the gradient step gives x′ ← arg miny{1
2
‖y − x‖2

1 + α〈∇f(x), y − x〉},
while the mirror step with entropy regularizer gives x′ ← arg miny{

∑
i yi log(yi/xi) +

α〈∇f(x), y − x〉}. We shall point out in Appendix 4.A.1 that non-Euclidean norms

are very important for certain applications.

In the special case of w(x) = 1
2
‖x‖2

2 and ‖ · ‖ = ‖ · ‖2, gradient and mirror steps

are indistinguishable from each other. However, as we have discussed earlier, these

two update rules are often equipped with very different convergence analyses, even if

they ‘look the same’.

4.3 Warm-Up Accelerated Gradient Method with

Fixed Step Length

We adopt the same setting as in Section 4.2.1: that is, f(x) is convex and differentiable

on its domain Q, and is L-smooth with respect to some norm ‖ · ‖. (Note that f(x)

may not have a good Lipschitz continuity parameter ρ, but we do not need such a

property.)

In this section, we focus on the unconstrained case of Q = Rn, and wish to

combine gradient descent and mirror descent to produce a very simple accelerated

method, which matches the running time of Nesterov’s. We choose to explain this

method first because it avoids the mysterious choice of the step lengths in the full

accelerated gradient methods, and carries our conceptual message in a very clean way.

As argued in Section 4.1.3, it is desirable to design an algorithm that, in every

single step k, performs both a gradient and a mirror step, and ensures that the two

steps are linearly coupled. In particular, we consider the following steps: starting from

x0 = y0 = z0, in each step k = 0, 1, . . . , T −1, we first compute xk+1 ← τzk+(1−τ)yk
and then

• perform a gradient step yk+1 ← Grad(xk+1), and

• perform a mirror step zk+1 ← Mirrzk
(
α∇f(xk+1)

)
.13

Above, α is the (fixed) step length of the mirror step, while τ is the parameter

controlling our coupling. The choices of α and τ will become clear at the end of this

section, but from a high level,

• α will be determined from the mirror-descent analysis, similar to that in (4.8),

and

13Here, the mirror step Mirr is defined by specifying any DGF w(·) that is 1-strongly convex over
Q.

100

• τ will be determined as the best parameter to balance the gradient and mirror

steps, similar to the ‘magic number’ K in our thought experiment discussed

in Section 4.1.3.

The classical gradient-descent and mirror-descent analyses immediately imply the

following

Lemma 4.4. For every u ∈ Q = Rn,

α〈∇f(xk+1), zk − u〉
¬

≤ α2

2
‖∇f(xk+1)‖2

∗ + Vzk(u)− Vzk+1
(u)

­

≤ α2L
(
f(xk+1)− f(yk+1)

)
+ Vzk(u)− Vzk+1

(u) . (4.10)

Proof. To deduce ¬, we note that our mirror step zk+1 = Mirrzk(α∇f(xk+1)) is es-

sentially identical to that of xk+1 = Mirrxk(α∇f(xk)) in (4.7), with only changes of

variable names. Therefore, inequality ¬ is a simple copy-and-paste from (4.7) after

changing the variable names (see the proof of (4.7) for details). The second inequal-

ity ­ is from the gradient step guarantee f(xk+1) − f(yk+1) ≥ 1
2L
‖∇f(xk+1)‖2

∗ in

(4.6). �

One can already see from the above Lemma 4.4 that, although the mirror step

introduces an error of α2

2
‖∇f(xk+1)‖2

∗, this error is proportional to the amount of the

gradient step progress f(xk+1) − f(yk+1). To be clear, this captures the observation

we have stated in the introduction: if ‖∇f(xk+1)‖∗ is large, we can make a large

gradient step, or if ‖∇f(xk+1)‖∗ is small, the mirror step suffers from a small loss.

At this moment, if we choose τ = 1 or equivalently xk+1 = zk, the left hand

side of inequality (4.10) gives us 〈∇f(xk+1), xk+1 − u〉, the regret at iteration xk+1.

We therefore wish to telescope it for all choices of k in the spirit as mirror descent

(see (4.8)); however, we face the problem that the terms f(xk+1) − f(yk+1) do not

telescope.14 On the other hand, if we choose τ = 0 or equivalently xk+1 = yk, then

the terms f(xk+1) − f(yk+1) = f(yk) − f(yk+1) telescope, but the left hand side of

(4.10) is no longer the regret.15

To overcome this issue, we need the linear coupling. We compute and upper bound

the difference between the left hand side of (4.10) and the real ‘regret’:

α〈∇f(xk+1), xk+1 − u〉 − α〈∇f(xk+1), zk − u〉

= α〈∇f(xk+1), xk+1 − zk〉 =
(1− τ)α

τ
〈∇f(xk+1), yk − xk+1〉 ≤

(1− τ)α

τ
(f(yk)− f(xk+1)).

(4.11)

14In other words, although a gradient step may decrease the objective from f(xk+1) to f(yk+1),
it may also get the objective increased from f(yk) to f(xk+1).

15Indeed, our “thought experiment” in the introduction is conducted as if we both had xk+1 = zk
and xk+1 = yk, and therefore we could arrive at the desired (4.12) directly.

101

Above, we have used the choice of xk+1 that satisfies τ(xk+1−zk) = (1−τ)(yk−xk+1),

as well as the convexity of f(·).
It is now clear that by choosing 1−τ

τ
= αL and combining (4.10) and (4.11), we

immediately have

Lemma 4.5 (Coupling). Letting τ ∈ (0, 1) satisfy that 1−τ
τ

= αL, we have that

∀u ∈ Q = Rn, α〈∇f(xk+1), xk+1 − u〉 ≤ α2L
(
f(yk)− f(yk+1)

)
+
(
Vzk(u)− Vzk+1

(u)
)
.

It is clear from the above proof that τ is introduced to precisely balance the objective

decrease f(xk+1) − f(yk+1), and the (possible) objective increase f(yk) − f(xk+1).

This is similar to the ‘magic number’ K discussed in the introduction.

Convergence Rate. Finally, we only need to telescope the inequality in Lemma 4.5

for k = 0, 1, . . . , T − 1. Letting x̄
def
= 1

T

∑T−1
k=0 xk and u = x∗, we have

αT (f(x̄)−f(x∗)) ≤
T−1∑
k=0

α〈∂f(xk), xk−x∗〉 ≤ α2L
(
f(y0)−f(yT)

)
+Vx0(x

∗)−VxT (x∗) .

(4.12)

Suppose that our initial point y0 is of error at most d (i.e., f(y0) − f(x∗) ≤ d), and

Vx0(x
∗) ≤ Θ, then (4.12) gives that

f(x̄)− f(x∗) ≤ 1

T

(
αLd+ Θ/α

)
.

Choosing α =
√

Θ/Ld to be the value that balances the above two terms,16 we obtain

that f(x̄)− f(x∗) ≤ 2
√
LΘd
T

. In other words,

in T = 4
√
LΘ/d steps, we can obtain some x̄ satisfying f(x̄)− f(x∗) ≤ d/2,

halving the distance to the optimum. If we restart this entire procedure a few number

of times, halving the distance for every run, then we obtain an ε-approximate solution

in

T = O
(√

LΘ/ε+
√
LΘ/2ε+

√
LΘ/4ε+ · · ·

)
= O

(√
LΘ/ε

)
iterations, matching the same guarantee of Nesterov’s accelerated methods [116, 117,

118].

It is important to note here that α =
√

Θ/Ld increases as time goes (i.e., as d

goes down), and therefore τ = 1
αL+1

decreases as time goes. This lesson instructs us

that gradient steps should be given more weights than mirror steps, when it is closer

to the optimum.17

16We remark here that this is essentially the way to choose α in mirror descent, see (4.8).
17One may find this counter-intuitive because when it is closer to the optimum, the observed

gradients will become smaller, and therefore mirror steps should perform well due to our conceptual
message in the introduction. This understanding is incorrect for two reasons. First, when it is
closer to the optimum, the threshold between ‘large’ and ‘small’ gradients also become smaller, so
one cannot rely only on mirror steps. Second, when it is closer to the optimum, mirror steps are
more ‘unstable’ and may increase the objective more (in comparison to the current distance to the
optimum), and thus should be given less weight.

102

Algorithm 1 AGM(f, w, x0, T)

Input: f a differentiable and convex function on Q that is L-smooth with respect to
‖ · ‖;

w the DGF function that is 1-strongly convex with respect to the same ‖ · ‖
over Q;

x0 some initial point; and T the number of iterations.
Output: yT such that f(yT)− f(x∗) ≤ 4ΘL

T 2 .

1: Vx(y)
def
= w(y)− 〈∇w(x), y − x〉 − w(x).

2: y0 ← x0, z0 ← x0.
3: for k ← 0 to T − 1 do
4: αk+1 ← k+2

2L
, and τk ← 1

αk+1L
= 2

k+2
.

5: xk+1 ← τkzk + (1− τk)yk.
6: yk+1 ← Grad(xk+1) . = arg miny∈Q

{
L
2
‖y − xk+1‖2 + 〈∇f(xk+1), y − xk+1〉

}
7: zk+1 ← Mirrzk

(
αk+1∇f(xk+1)

)
.

= arg minz∈Q
{
Vzk(z) + 〈αk+1∇f(xk+1), z − zk〉

}
8: end for
9: return yT .

Conclusion. Equipped with the basic knowledge of gradient descent and mirror

descent, the above proof is quite straightforward and also gives intuition to how the

two ‘magic numbers’ α and τ are selected. We are unaware of any similar accelerated

gradient method that uses fixed step length like ours (when the objective is not known

to be strongly convex).

However, this simple algorithm has several caveats. First, the value α depends

on the knowledge of Θ; second, a good initial distance bound d has to be specified;

and third, the algorithm has to be restarted. In the next section, we choose α and τ

differently between iterations, in order to extend the above analysis to allow Q to be

constrained, as well as overcome the mentioned caveats.

4.4 Final Accelerated Gradient Method with Vari-

able Step Lengths

In this section, we recover the main result of [118] in the unconstrained case, that is

Theorem 4.6. If f(x) is L-smooth with respect to ‖ · ‖ on Q, and w(x) is 1-

strongly convex with respect to the same ‖ · ‖ on Q, the algorithm AGM(f, w, x0, T)

in Algorithm 1 ensures

f
(
yT
)
− f(x∗) ≤ 4ΘL

T 2
.

Here, recall from Section 4.2.2 that Θ is any upper bound on Vx0(x
∗).

103

We remark here that it is very important to allow the norm ‖ · ‖ to be general, rather

than focusing on the `2-norm as in [117]. See our discussion in Appendix 4.A.1.

This time, we start from x0 = y0 = z0, and in each step k = 0, 1, . . . , T − 1, we

first compute xk+1 ← τkzk + (1− τk)yk and then (as illustrated in Algorithm 1)

• perform a gradient step yk+1 ← Grad(xk+1), and

• perform a mirror step zk+1 ← Mirrzk
(
αk+1∇f(xk+1)

)
.

Here, αk+1 is the step length of the mirror descent and its choice will become clear at

the end of this section (and indeed increasing as time goes, similar to the warm-up

case). The value of τk is chosen as 1
αk+1L

comparing to 1
αk+1L+1

in the warm-up case,

in order to capture the constrained case Q 6= Rn. Our eventual choice of αk+1 will

ensure that τk ∈ (0, 1] for each k.

We state the counterpart of Lemma 4.4, whose proof can be found in Appendix 4.C:

Lemma 4.7. If τk = 1
αk+1L

, then it satisfies that for every u ∈ Q,

αk+1〈∇f(xk+1), zk − u〉
¬

≤ α2
k+1LProg(xk+1) + Vzk(u)− Vzk+1

(u)

­

≤ α2
k+1L

(
f(xk+1)− f(yk+1)

)
+ Vzk(u)− Vzk+1

(u) .

We state the counterpart of Lemma 4.5, whose proof is only slightly different from

Lemma 4.5 because we are using τk = 1
αk+1L

rather than τ = 1
αL+1

, and can be found

in Appendix 4.C:

Lemma 4.8 (Coupling). For any u ∈ Q,(
α2
k+1L

)
f(yk+1)−

(
α2
k+1L− αk+1

)
f(yk) +

(
Vzk+1

(u)− Vzk(u)
)
≤ αk+1f(u) .

Finally, we only need to set the sequence of αk so that α2
kL ≈ α2

k+1L − αk+1 as

well as τk = 1/αk+1L ∈ (0, 1]. For instance, we can let αk = k+1
2L

so that α2
kL =

α2
k+1L− αk+1 + 1

4L
.

Proof of Theorem 4.6. After telescoping Lemma 4.8 with k = 0, 1, . . . , T−1 we obtain

that

α2
TLf(yT) +

∑T−1
k=1

1
4L
f(yk) +

(
VzT (u)− Vz0(u)

)
≤
∑T

k=1 αkf(u) .

By choosing u = x∗, we notice that
∑T

k=1 αk = T (T+3)
4L

, f(yk) ≥ f(x∗), VzT (u) ≥ 0

and Vz0(x
∗) ≤ Θ. Therefore, we obtain

(T+1)2

4L2 Lf(yT) ≤
(
T (T+3)

4L
− T−1

4L

)
f(x∗) + Θ ,

which after simplification implies f(yT) ≤ f(x∗) + 4ΘL
(T+1)2

. �

Let us make two remarks.

• First, our accelerated method AGM is almost the same to that of Nesterov [118],

with the following (minor) differences: (1) we use mirror steps instead of dual

104

averaging steps,18 (2) we allow arbitrary starting points x0, and (3) we use

τk = 2
k+2

rather than τk = 2
k+3

.

• This method is very different from the (perhaps better-known) version of Nes-

terov [117], which is only applicable to the `2 Euclidean case, and is known by

some authors as the ‘momentum analysis’ or ‘momentum method’ [123, 156].

To the best of our knowledge, the momentum analysis does not apply to non-

Euclidean spaces.

4.5 Strong Convexity Version of Accelerated Gra-

dient Method

When the objective f(·) is both σ-strongly convex and L-smooth with respect to the

same norm ‖ · ‖2, another version of accelerated gradient method exists and achieves

a log(1/ε) convergence rate [117, Theorem 2.2.2]. We show in this section that,

our method AGM(f, w, x0, T) can be used to recover that strong-convexity accelerated

method in one of the two ways. Therefore, the gradient-mirror coupling interpretation

behind our paper still applies to the strong-convexity accelerated method.

One way to recover the strong-convexity accelerated method is to replace the use

of the mirror-descent analysis on the regret term by its strong-convexity counterpart

(also known as logarithmic-regret analysis, see for instance [73, 144]). This would

incur some different parameter choices on αk and τk, and results in an algorithm

similar to that of [117].

Another, but simpler way is to recursively apply Theorem 4.6. In light of the

definition of strong convexity and Theorem 4.6, we have

σ
2
‖yT − x∗‖2

2 ≤ f(yT)− f(x∗) ≤ 4· 1
2
‖x0−x∗‖22·L

T 2 .

In particular, in every T = T0
def
=
√

8L/σ iterations, we can halve the distance ‖yT −
x∗‖2

2 ≤ 1
2
‖x0 − x∗‖2

2. If we repeatedly invoke AGM(f, w, ·, T0) a sequence of ` times,

each time feeding the initial vector x0 with the previous output yT0 , then in the last

run of the T0 iterations, we have

f(yT0)− f(x∗) ≤ 4· 1
2`
‖x0−x∗‖22·L
T 2
0

= 1
2`+1‖x0 − x∗‖2

2 · σ .

By choosing ` = log
(‖x0−x∗‖22·σ

ε

)
, we conclude that

Corollary 4.9. If f(·) is both σ-strongly convex and L-smooth with respect to ‖·‖2,

in a total of T = O
(√

L
σ
· log

(‖x0−x∗‖22·σ
ε

))
iterations, we can obtain some x such

that f(x)− f(x∗) ≤ ε.

This is slightly better than the result O
(√

L
σ
·log

(‖x0−x∗‖22·L
ε

))
in [117, Theorem 2.2.2].

18We are unaware of the existence of this mirror-descent version of Nesterov’s accelerated method
recorded anywhere.

105

We remark here that O’Donoghue and Candès [123] have studied some heuristic

adaptive restarting techniques which suggest that the above (and other) restarting

version of the accelerated method practically outperforms the original method of

Nesterov.

Acknowledgements
We thank Jon Kelner and Yin Tat Lee for helpful conversations, and Aaditya Ramdas

for pointing out a typo in the previous version of this paper.

This material is based upon work partly supported by the National Science Foun-

dation under Grant CCF-1319460 and by a Simons Graduate Student Award under

grant no. 284059.

Appendix

4.A Several Remarks on First-Order Methods

4.A.1 Importance of Non-Euclidean Norms

Let us use a simple example to illustrate the importance of allowing arbitrary norms

in studying first-order methods.

Consider the saddle point problem of minx∈∆n maxy∈∆m y
TAx, where A is an m×n

matrix, ∆n = {x ∈ Rn : x ≥ 0 ∧ 1Tx = 1} is the unit simplex in Rn, and ∆m = {y ∈
Rm : y ≥ 0 ∧ 1Ty = 1}. This problem is important to study because it captures

packing and covering linear programs that have wide applications in many areas of

computer science, see the discussion in [7] or Chapter 5 of this thesis.

Letting µ = ε
2 logm

, Nesterov [118] has shown that the following objective

fµ(x)
def
= µ log

(1

m

m∑
j=1

exp
1
µ

(Ax)j
)
,

when optimized over x ∈ ∆n, can yield an additive ε/2 solution to the original saddle

point problem.

This fµ(x) is proven to be 1
µ
-smooth with respect to the `1-norm over ∆n, if all

the entries of A are between [−1, 1]. Instead, fµ(x) is 1
µ
-smooth with respect to the

`2-norm over ∆n, only if the sum of squares of every row of A is at most 1. This

`2 condition is certainly stronger and less natural than the `1 condition, and the `1

condition one leads to the fastest (approximate) width-dependent positive LP solver

(see the discussion in [7] or Chapter 5 of this thesis).

Different norm conditions also yield different gradient and mirror descent steps.

For instance, in the `1-norm case, the gradient step is x′ ← arg minx′∈∆n

{
1
2
‖x′ −

x‖2
1 + α〈∇fµ(x), x′− x〉

}
, and the mirror step is x′ ← arg minx′∈∆n

{∑
i∈[n]x

′
i log

x′i
xi

+

α〈∇fµ(x), x′ − x〉
}

. In the `2-norm case, gradient and mirror steps are both of the

form x′ ← arg minx′∈∆n

{
1
2
‖x′ − x‖2

2 + α〈∇fµ(x), x′ − x〉
}

.

106

One can find other applications as well in [118] for the use of non-Euclidean

norms, and an interesting example of `∞-norm gradient descent for nearly-linear time

maximum flow in [88].

It is now important to note that, the methods in [116, 117] work only for the

`2-norm case, and it is not clear how the proof can be generalized to other norms

until [118]. Some other proofs (such as Fercoq and Richtárik [61]) only work for the

`2-norm because the mirror steps are described as (a scaled version of) gradient steps.

4.A.2 Multiplicative Weight Updates as Mirror Descent

The multiplicative weight update (MWU) method (see the survey of Arora, Hazan

and Kale [10]) is a simple method that has been repeatedly discovered in theory of

computation, machine learning, optimization, and game theory. The setting of this

method is the following.

Let ∆n = {x ∈ Rn : x ≥ 0 ∧ 1Tx = 1} be the unit simplex in Rn, and we call

any vector in ∆n an action. A player is going to play T actions x0, . . . , xT−1 ∈ ∆n

in a row; only after playing xk, the player observes a loss vector `k ∈ Rn that may

depend on xk, and suffers from a loss value 〈`k, xk〉. The MWU method ensures that,

if ‖`k‖∞ ≤ ρ for all k ∈ [T], then the player has an (adaptive) strategy to choose the

actions such that the average regret is bounded:

1

T

(T−1∑
i=0

〈`k, xk〉 − min
u∈∆n

T−1∑
i=0

〈`k, u〉
)
≤ O

(ρ√log n√
T

)
. (4.13)

The left hand side is called the average regret because it is the (average) difference

between the suffered loss
∑T−1

i=0 〈`k, xk〉, and the loss
∑T−1

i=0 〈`k, u〉 of the best action

u ∈ ∆n in hindsight. Another way to interpret (4.13) is to state that we can obtain

an average regret of ε using T = O(ρ
2 logn
ε2

) rounds.

The above result can be proven directly using mirror descent. Letting w(x)
def
=∑

i xi log xi be the entropy DGF over the simplex Q = ∆n, and its corresponding

Bregman divergence Vx(x
′)

def
=
∑

i∈[n]x
′
i log

x′i
xi

, we consider the following update rule.

Start from x0 = (1/n, . . . , 1/n), and update xk+1 = Mirrxk
(
α`k
)
, or equivalently,

xk+1,i = xk,i · exp−α`k,i /Zk, where Zk > 0 is the normalization factor that equals to∑n
i=1 xk,i · exp−α`k,i .19 Then, the mirror-descent guarantee (4.7) implies that20

∀u ∈ ∆n, α〈`k, xk − u〉 ≤
α2

2
‖`k‖2

∞ + Vxk(u)− Vxk+1
(u) .

After telescoping the above inequality for all k = 0, 1, . . . , T − 1, and using the upper

19This version of the MWU is often known as the Hedge rule [65]. Another commonly used version

is to choose xk+1,i =
xk,i(1−α`k,i)

Zk
. Since e−t ≈ 1 − t whenever |t| is small and our choice of α will

make sure that |α`k,i| � 1, this is essentially identical to the Hedge rule.
20To be precise, we have replaced ∂f(xk) with `k. It is easy to see from the proof of (4.7) that

this loss vector `k does not need to come from the subgradient of some objective f(·).

107

bounds ‖`(xk)‖∞ ≤ ρ and Vx0(u) ≤ log n, we obtain that for all u ∈ ∆n,

1

T

T−1∑
k=0

〈`k, xk − u〉 ≤
αρ2

2
+

log n

αT
.

Setting α =
√

logn

ρ
√
T

we arrive at the desired average regret bound (4.13).

In sum, we have re-deduced the MWU method from mirror descent, and the above

proof is quite different from most of the classical analysis of MWU (e.g., [131, 65, 9,

10]). It can be generalized to solve the matrix version of MWU [126, 10], as well as to

incorporate the width-reduction technique [131, 10]. We ignore such extensions here

because they are outside the scope of this paper.

4.A.3 Partial Equivalence Between Mirror Descent and Dual

Averaging

In this section, we show the (folklore) equivalence between mirror descent and dual

averaging in two special cases: i) when Q = Rn and w is a general regularizer, and

ii) when Q = {x ≥ 0 : 1Tx = 1} is the n-dimensional simplex and w is the entropy

regularizer. In fact, this equivalence holds more generally for all regularizers w(·) that

are convex function of Legendre type with domain Q (see for instance [22, 136]).

Letting ξi = αi∇f(xi) be the observed (scaled) gradient at step i, the dual aver-

aging method can be described as

∀k ∈ [T], xk = arg min
y∈Q

{
w(y) +

k−1∑
i=0

〈ξi, y − xi〉
}
. (4.14)

The mirror descent method (with starting point x̃0 = arg miny∈Q{w(y)}) can be

described as

∀k ∈ [T], x̃k = arg min
y∈Q

{
Vx̃k−1

(y) + 〈ξk−1, y − x̃k−1〉
}
, (4.15)

where as before, Vx(y)
def
= w(y)− 〈∇w(x), y− x〉 −w(x) is the Bregman divergence of

w(·).

Unconstrained Case. If Q = Rn, by taking the derivative from (4.14), we obtain

that ∇w(xk) = −
∑k−1

i=0 ξi. On the other hand, by taking the derivative from (4.15),

we obtain that

∇Vx̃k−1
(x̃k) = −ξk−1 ⇐⇒ ∇w(x̃k)−∇w(x̃k−1) = −ξk−1 .

Combining this with the fact that∇w(x̃0) = 0, we conclude that∇w(x̃k) = −
∑k−1

i=0 ξi.

This finishes the proof of x̃k = xk in the unconstrained Q = Rn case, because the

solution x to ∇w(x) = −
∑k−1

i=0 ξi must be unique for a strongly convex function w(·).

Simplex Case. If Q = {x ≥ 0 : 1Tx = 1} is the simplex, ‖·‖ = ‖·‖1 is the `1-norm,

w(x) =
∑

i xi log xi is the entropy regularizer, we can precisely compute according to

108

(4.14) and (4.15) that for every iteration k and coordinate j ∈ [n],

xk,j =
exp−

∑k−1
i=0 `i,j

Zk
and x̃k,j =

x̃k−1,j · exp−`k,j

Z̃k
,

where Zk and Z̃k are normalization constants that ensure 1Txk = 1T x̃k = 1. It is a

simple exercise to verify that xk = x̃k for every k.

4.A.4 Deducing the Mirror-Descent Guarantee via Gradient

Descent

In this section, we re-deduce the convergence rate of mirror descent from gradient de-

scent. In particular, we show that the dual averaging steps are equivalent to gradient

steps on the Fenchel dual of the regularized regret, and deduce the same convergence

bound as (4.9). (Similar proof can also be obtained for mirror steps but is notationally

more involved.)

Given a sequence of points x0, . . . , xT−1 ∈ Q, the (scaled) regret with respect to

any point u ∈ Q is R(x0, . . . , xT−1, u)
def
=
∑T−1

i=0 α〈∂f(xi), xi − u〉. Since it satisfies

that αT · (f(x̄)− f(u)) ≤ R(x0, . . . , xT−1, u), the average regret (after scaling) upper

bounds on the distance between any point f(u) and the average x̄ = 1
T

(x0+· · ·+xT−1).

Consider now the regularized regret

R̂(x0, . . . , xT−1)
def
= max

u∈Q

{ T−1∑
i=0

α〈∂f(xi), xi − u〉 − w(u)
}
,

and we can rewrite it using the Fenchel dual w∗(λ)
def
= maxu∈Q{〈λ, u〉−w(u)} of w(·):

R̂(x0, . . . , xT−1) = w∗
(
− α

T−1∑
i=0

∂f(xi)
)

+
T−1∑
i=0

α〈∂f(xi), xi〉 .

The classical theory of Fenchel duality tells us that w∗(λ) is 1-smooth with respect

to the dual norm ‖ · ‖∗, because w(·) is 1-strongly convex with respect to ‖ · ‖. We

also have ∇w∗(λ) = arg maxu∈Q{〈λ, u〉 − w(u)}. (See for instance [143].)

With enough notations introduced, let us now minimize R̂ by intelligently selecting

x0, . . . , xT−1. Perhaps a little counter-intuitively, we start from x0 = · · · = xT−1 =

x∗ and accordingly ∂f(x∗) = 0 (if there are multiple subgradients at x∗, choose

the zero one). This corresponds to a regret value of zero and a regularized regret

R̂(x∗, . . . , x∗) = w∗(0) = −minu∈Q{w(u)}.
Next, we choose the values of x0, . . . , xT−1 one by one. We choose x0 = arg minu∈Q{w(u)}

as the starting point.21 Suppose that the values of x0, . . . , xk−1 are already deter-

mined, and we are ready to pick xk ∈ Q. Let us compute the changes in the regular-

21Dual averaging steps typically demand the first point x0 to be at the minimum of the regularizer
w(·), because that leads to the cleanest analysis. This can be relaxed to allow an arbitrary starting
point.

109

ized regret as a function of xk:

∆R̂ = R̂(x0, . . . , xk, x
∗, . . . , x∗)− R̂(x0, . . . , xk−1, x

∗, . . . , x∗)

= w∗
(
− α

k∑
i=0

∂f(xi)
)
− w∗

(
− α

k−1∑
i=0

∂f(xi)
)

+ α〈∂f(xk), xk〉

≤
〈
∇w∗

(
− α

k−1∑
i=0

∂f(xi)
)
,−α∂f(xk)

〉
+

1

2

∥∥α∂f(xk)
∥∥2

∗ + α〈∂f(xk), xk〉 .

(4.16)

Here, the last inequality is because w∗(a)−w∗(b) ≤ 〈∇w∗(b), a−b〉+ 1
2
‖a−b‖2

∗, owing

to the smoothness of w∗(·). At this moment, it is clear to see that if one chooses

xk = ∇w∗
(
− α

k−1∑
i=0

∂f(xi)
)

= arg min
u∈Q

{
w(u) +

k−1∑
i=0

α〈∂f(xi), u〉
}
,

the first and third terms in (4.16) cancel out, and we obtain ∆R̂ ≤ 1
2

∥∥α∂f(xk)
∥∥2

∗.
22 In

other words, the regularized regret increases by no more than 1
2

∥∥α∂f(xk)
∥∥2

∗ ≤ α2ρ2/2

in each step, so in the end we have R̂(x0, . . . , xT−1) ≤ −w(x0) + α2ρ2T/2.

In sum, by the definition of the regularized regret, we have

αT · (f(x̄)− f(x∗))− w(x∗) ≤
T−1∑
i=0

α〈∂f(xi), xi − x∗〉 − w(x∗) ≤ R̂(x0, . . . , xT−1)

≤ −w(x0) +
α2ρ2T

2
.

This implies the following upper bound on the optimality of f(x̄)

f(x̄)− f(x∗) ≤ αρ2

2
+
w(x∗)− w(x0)

αT
=
αρ2

2
+
Vx0(x

∗)

αT
≤ αρ2

2
+

Θ

αT
.

Finally, choosing α =
√

2Θ
ρ·
√
T

to be the step length, we arrive at f(x̄)− f(x∗) ≤
√

2Θ·ρ√
T

,

which is the same convergence rate as (4.9).

4.B Missing Proof of Section 4.2

For the sake of completeness, we provide self-contained proofs of the mirror descent

and mirror descent guarantees in this section.

4.B.1 Missing Proof for Gradient Descent

22This essentially proves (4.5) in the introduction after scaling: ∆R̂ = α(k + 1) maxu R̃k+1(u) −
αkmaxu R̃k(u).

110

Gradient Descent Guarantee

f(Grad(x)) ≤ f(x)− Prog(x) (4.6)

or in the special case when Q = Rn f(Grad(x)) ≤ f(x)− 1

2L
‖∇f(x)‖2

∗ .

Proof. 23 Letting x̃ = Grad(x), we prove the first inequality by

Prog(x) = −min
y∈Q

{L
2
‖y − x‖2 + 〈∇f(x), y − x〉

}
= −

(L
2
‖x̃− x‖2 + 〈∇f(x), x̃− x〉

)
= f(x)−

(L
2
‖x̃− x‖2 + 〈∇f(x), x̃− x〉+ f(x)

)
≤ f(x)− f(x̃) .

Here, the last inequality is a consequence of the smoothness assumption: for any

x, y ∈ Q,

f(y)− f(x) =

∫ 1

τ=0

〈∇f(x+ τ(y − x)), y − x〉dτ

= 〈∇f(x), y − x) +

∫ 1

τ=0

〈∇f(x+ τ(y − x))−∇f(x), y − x〉dτ

≤ 〈∇f(x), y − x) +

∫ 1

τ=0

‖∇f(x+ τ(y − x))−∇f(x)‖∗ · ‖y − x‖dτ

≤ 〈∇f(x), y − x) +

∫ 1

τ=0

τL‖y − x‖ · ‖y − x‖dτ = 〈∇f(x), y − x) +
L

2
‖y − x‖2

The second inequality follows because in the special case of Q = Rn, we have

Prog(x) = −min
y∈Q

{L
2
‖y − x‖2 + 〈∇f(x), y − x〉

}
=

1

2L
‖∇f(x)‖2

∗ . �

Fact 4.10 (Gradient Descent Convergence). Let f(x) be a convex, differentiable func-

tion that is L-smooth with respect to ‖ · ‖ on Q = Rn, and x0 any initial point in Q.

Consider the sequence of T gradient steps xk+1 ← Grad(xk), then the last point xT
satisfies that

f(xT)− f(x∗) ≤ O
(LR2

T

)
,

where R = maxx:f(x)≤f(x0) ‖x− x∗‖, and x∗ is any minimizer of f .

Proof. 24 Recall that we have f(xk+1) ≤ f(xk) − 1
2L
‖∇f(xk)‖2

∗ from (4.6). Further-

more, by the convexity of f and Cauchy-Schwarz we have

f(xk)− f(x∗) ≤ 〈∇f(xk), xk − x∗〉 ≤ ‖∇f(xk)‖∗ · ‖xk − x∗‖ ≤ R · ‖∇f(xk)‖∗ .
Letting Dk = f(xk)−f(x∗) denote the distance to the optimum at iteration k, we now

obtain two relationships Dk −Dk+1 ≥ 1
2L
‖∇f(xk)‖2

∗ as well as Dk ≤ R · ‖∇f(xk)‖∗.

23This proof can be found for instance in the textbook [117].
24Our proof follows almost directly from Nesterov [117], but he only uses the Euclidean `2 norm.

111

Combining these two, we get

D2
k ≤ 2LR2(Dk −Dk+1) =⇒ Dk

Dk+1

≤ 2LR2
(1

Dk+1

− 1

Dk

)
.

Noticing that Dk ≥ Dk+1 because our objective only decreases at every round, we

obtain that 1
Dk+1

− 1
Dk
≥ 1

2LR2 . Finally, we conclude that at round T , we must have
1
DT
≥ T

2LR2 , finishing the proof that f(xT)− f(x∗) ≤ 2LR2

T
. �

4.B.2 Missing Proof for Mirror Descent

Mirror Descent Guarantee

If xk+1 = Mirrxk
(
α · ∂f(xk)

)
, then

∀u ∈ Q, α(f(xk)−f(u)) ≤ α〈∂f(xk), xk−u〉 ≤
α2

2
‖∂f(xk)‖2

∗+Vxk(u)−Vxk+1
(u) .

(4.7)

Proof. 25 we compute that

α〈∂f(xk), xk − u〉 = 〈α∂f(xk), xk − xk+1〉+ 〈α∂f(xk), xk+1 − u〉
¬

≤ 〈α∂f(xk), xk − xk+1〉+ 〈−∇Vxk(xk+1), xk+1 − u〉
­
= 〈α∂f(xk), xk − xk+1〉+ Vxk(u)− Vxk+1

(u)− Vxk(xk+1)

®

≤
(
〈α∂f(xk), xk − xk+1〉 −

1

2
‖xk − xk+1‖2

)
+
(
Vxk(u)− Vxk+1

(u)
)

¯

≤ α2

2
‖∂f(xk)‖2

∗ +
(
Vxk(u)− Vxk+1

(u)
)

Here, ¬ is due to the minimality of xk+1 = arg minx∈Q{Vxk(x) + 〈α∂f(xk), x〉}, which

implies that 〈∇Vxk(xk+1) + α∂f(xk), u − xk+1〉 ≥ 0 for all u ∈ Q. ­ is due to the

triangle equality of Bregman divergence.26 ® is because Vx(y) ≥ 1
2
‖x − y‖2 by the

strong convexity of the DGF w(·). ¯ is by Cauchy-Schwarz. �

4.C Missing Proofs of Section 4.4

Lemma 4.7. If τk = 1
αk+1L

, then it satisfies that for every u ∈ Q,

αk+1〈∇f(xk+1), zk − u〉
¬

≤ α2
k+1LProg(xk+1) + Vzk(u)− Vzk+1

(u)

25This proof can be found for instance in the textbook [27].
26 That is,

∀x, y ≥ 0, 〈−∇Vx(y), y − u〉 = 〈∇w(x)−∇w(y), y − u〉
= (w(u)− w(x)− 〈∇w(x), u− x〉)− (w(u)− w(y)− 〈w(y), u− y)〉)
− (w(y)− w(x)− 〈∇w(x), y − x〉)

= Vx(u)− Vy(u)− Vx(y) .

112

­

≤ α2
k+1L

(
f(xk+1)− f(yk+1)

)
+ Vzk(u)− Vzk+1

(u) .

Proof. The second inequality ­ is again from the gradient descent guarantee f(xk+1)−
f(yk+1) ≥ Prog(xk+1). To prove ¬, we first write down the key inequality of mirror-

descent analysis (whose proof is identical to that of (4.7))

αk+1〈∇f(xk+1), zk − u〉 = 〈αk+1∇f(xk+1), zk − zk+1〉+ 〈αk+1∇f(xk+1), zk+1 − u〉
¬

≤ 〈αk+1∇f(xk+1), zk − zk+1〉+ 〈−∇Vzk(zk+1), zk+1 − u〉
­
= 〈αk+1∇f(xk+1), zk − zk+1〉+ Vzk(u)− Vzk+1

(u)− Vzk(zk+1)

®

≤
(
〈αk+1∇f(xk+1), zk − zk+1〉 −

1

2
‖zk − zk+1‖2

)
+
(
Vzk(u)− Vzk+1

(u)
)

Here, ¬ is due to the minimality of zk+1 = arg minz∈Q{Vzk(z) + 〈αk+1∇f(xk+1), z〉},
which implies that 〈∇Vzk(zk+1)+αk+1∇f(xk+1), u−zk+1〉 ≥ 0 for all u ∈ Q. ­ is due

to the triangle equality of Bregman divergence (see Footnote 26 in Appendix 4.B). ®

is because Vx(y) ≥ 1
2
‖x− y‖2 by the strong convexity of the w(·).

If one stops here and uses Cauchy-Shwartz 〈αk+1∇f(xk+1), zk − zk+1〉 − 1
2
‖zk −

zk+1‖2 ≤ α2
k+1

2
‖∇f(xk+1)‖2

∗, he will get the desired inequality in the special case of

Q = Rn, because Prog(xk+1) = 1
2L
‖∇f(xk+1)‖2

∗ from (4.6).

For the general unconstrained case, we need to use the special choice of τk =

1/αk+1L follows. Letting v
def
= τkzk+1 + (1− τk)yk ∈ Q so that xk+1− v = (τkzk + (1−

τk)yk)− v = τk(zk − zk+1), we have

〈αk+1∇f(xk+1), zk − zk+1〉 −
1

2
‖zk − zk+1‖2

= 〈αk+1

τk
∇f(xk+1), xk+1 − v〉 −

1

2τ 2
k

‖xk+1 − v‖2

= α2
k+1L

(
〈∇f(xk+1), xk+1 − v〉 −

L

2
‖xk+1 − v‖2

)
≤ α2

k+1LProg(xk+1)

where the last inequality is from the definition of Prog(xk+1). �

Lemma 4.8 (Coupling). For any u ∈ Q,(
α2
k+1L

)
f(yk+1)−

(
α2
k+1L− αk+1

)
f(yk) +

(
Vzk+1

(u)− Vzk(u)
)
≤ αk+1f(u) .

Proof. We deduce the following sequence of inequalities

αk+1

(
f(xk+1)− f(u)

)
≤ αk+1〈∇f(xk+1), xk+1 − u〉
= αk+1〈∇f(xk+1), xk+1 − zk〉+ αk+1〈∇f(xk+1), zk − u〉
¬
=

(1− τk)αk+1

τk
〈∇f(xk+1), yk − xk+1〉+ αk+1〈∇f(xk+1), zk − u〉

­

≤ (1− τk)αk+1

τk
(f(yk)− f(xk+1)) + αk+1〈∇f(xk+1), zk − u〉

113

®

≤ (1− τk)αk+1

τk
(f(yk)− f(xk+1)) + α2

k+1L
(
f(xk+1)− f(yk+1)

)
+ Vzk(u)− Vzk+1

(u)

¯
=
(
α2
k+1L− αk+1

)
f(yk)−

(
α2
k+1L

)
f(yk+1) + αk+1f(xk+1) +

(
Vzk(u)− Vzk+1

(u)
)

Here, ¬ uses the choice of xk+1 that satisfies τk(xk+1 − zk) = (1− τk)(yk − xk+1); ­

is by the convexity of f(·) and 1− τk ≥ 0; ® uses Lemma 4.7; and ¯ uses the choice

of τk = 1/αk+1L. �

114

Chapter 5

Using Optimization to Solve

Positive LPs Faster in Parallel

This chapter is based on the result published in [7], and its further edits

can be found at:

http: // arxiv. org/ abs/ 1407. 1925 .

Positive linear programs (LP), also known as packing and covering linear pro-

grams, are an important class of problems that bridges computer science, operations

research, and optimization. Despite the consistent efforts on this problem, all known

nearly-linear-time algorithms require Õ(ε−4) iterations to converge to 1 ± ε approx-

imate solutions. This ε−4 dependence has not been improved since 1993, and limits

the performance of parallel implementations for such algorithms. Moreover, previous

algorithms and their analyses rely on update steps and convergence arguments that

are combinatorial in nature and do not seem to arise naturally from an optimization

viewpoint.

In this paper, we leverage new insights from optimization theory to construct

a novel algorithm that breaks the longstanding ε−4 barrier. Our algorithm has a

simple analysis and a clear motivation. Our work introduces a number of novel

techniques, such as the combined application of gradient descent and mirror descent,

and a truncated, smoothed version of the standard multiplicative weight update,

which may be of independent interest.

5.1 Introduction
Fractional packing and covering linear programs (LP) are described with non-negative

matrices, non-negative constraints, and non-negative variables. They are also known

as positive linear programs as originally studied by Luby and Nisan [101].

A generic packing LP takes the form max{cTx : Ax ≤ b} where c ∈ Rn
≥0, b ∈ Rm

≥0,

and A ∈ Rm×n
≥0 ; similarly, a covering LP can be written as min{bTy : ATy ≥ c}, with

115

http://arxiv.org/abs/1407.1925

the same requirements on A, b, and c. As in other works, we assume without loss of

generality that the LP is in its standard form: b = 1 and c = 1:1

Packing LP: maxx≥0{1Tx : Ax ≤ 1} , (5.1)

Covering LP: miny≥0{1Ty : ATy ≥ 1} . (5.2)

Since the two programs are dual to each other, we denote by OPT their shared optimal

value. We say that x is a (1 − ε)-approximation for the packing LP if Ax ≤ 1 and

1Tx ≥ (1 − ε)OPT, and y a (1 + ε)-approximation for the covering LP if ATy ≥ 1

and 1Ty ≤ (1 + ε)OPT.

Of course, it is possible to adopt the general Interior Point or Ellipsoid Methods to

obtain approximate solvers with a log(1/ε) dependence on the number of iterations.

However, the computational cost of such algorithms is typically very high, as each

iteration requires the solution of a system of linear equations in ATA. As a conse-

quence, this approach is simply not suitable to the solution of large-scale problems.

To address this issue, researchers have developed iterative approximate solvers

that achieve a better dependence on the problem size at the cost of having a poly(1/ε)

dependence on the approximation parameter ε. These algorithms rely crucially on

the power of multiplicative weight update methods (see the survey by Arora, Hazan

and Kale [10]). Multiplicative weight update methods can be viewed as special cases

of the mirror descent method, a widely-used first-order method in optimization (see

for instance [5] or Chapter 4 for this relationship). Such methods achieve fast running

times by eschewing any structure in the problem and only accessing the instance in

a restricted, quick fashion through the computation of gradients of the objective.

As a result, iterative approximate solvers often require a larger number of itera-

tions, i.e., one that depends on poly(1/ε), but each iteration consists only of a small

number of simple steps (such as matrix-vector multiplications or sorting operations)

and requires only nearly-linear work in N and O(logN) depth, even in the weak

EREW model of the Parallel Random Access Machine (PRAM).

Such fast approximate positive-LP solvers have been widely used in approximation

algorithms (e.g., MinSetCover [101], MaxSet, MaxDiCut, Max-k-CSP [158],

bipartite matching), probabilistic checkable proofs [158], zero-sum matrix games [118],

scheduling [131], graph embedding [131], flow controls [24, 25], auction mechanisms [169],

wireless sensor networks [38], and many other areas. In addition, techniques developed

in this line of research have also inspired many other important results, most notably

regarding fast algorithms for multi-commodity flow problems [131, 63, 68, 103, 20].

Previous approximate solvers can be further divided into two classes.

1This can be achieved simply by scaling.

116

Width-Dependent Solvers. These algorithms2 require a number of iterations that

is at least linearly dependent on ρ · OPT, where ρ is the largest entry, i.e. the width,

of matrix A. Since OPT ≥ 1/ρ, this value ρ · OPT is at least 1. However, since OPT

can easily be as large as 1 or even more than n, the resulting running time is not

polynomial, but only pseudo-polynomial. In particular, positive LPs can be solved in

O(ρ
2OPT2 logm

ε2
) iterations [131], or O(ρOPT logm

ε2
) iterations using negative-width tech-

niques [10]. These algorithms strongly rely on multiplicative weight updates and only

require “oracle-access” to the matrix A.

When A is given explicitly like in this paper, the number of iterations can be

reduced to O(ρOPT logm
ε

) by deploying more advanced optimization tools such as Nes-

terov’s accelerated gradient method [118], or Nemirovski’s mirror prox method [113].

It is also worth noting that Bienstock and Iyengar [32] have converted this dependence

on ρOPT into a more benign, yet linear dependence on n. More specifically, their it-

eration count is O(ε−1
√
Kn logm) where K is the maximum number of non-zeros per

row of A. This is O(ε−1n
√

logm) in the worst case.

Width-Independent Solvers. In this paper, we are interested in a second, more

efficient class of methods, i.e. width-independent,3 truly polynomial-time approximate

solvers (see Table 5.1).

This line of research was initiated by a seminal paper of Luby and Nisan [101],

who were able to remove the dependence from the width and give an algorithm

running in O
(

log2N
ε4

)
iterations. Theirs is the first nearly-linear-time approximate

solver for positive LPs and also the first to run in parallel in nearly-linear-work and

polylogarithmic depth. This algorithm was later simplified and made explicit for

parallelization by Bartal, Byers and Raz [24], improved to allow mixed packing and

covering by Young [165], and generalized by Awerbuch and Khandekar [17] to the

computational model where processors are restricted to be ‘stateless’. These solvers

are parallelizable because they only require O(polylog(N)/εO(1)) iterations to converge

to 1 ± ε approximate solutions. They are nearly-linear time because each iteration

runs in nearly-linear time.

A separate line of work starting from Bartal, Byers and Raz [24, 25] eschews the

parallelization constraint to design sequential width-independent solvers with a better

ε dependence. At high level, these algorithms modify the candidate LP solutions

2Note that most width-dependent solvers are studied under the minmax form of positive LPs:

min
x≥0

1T x=1

max
y≥0

1T y=1

yTAx ,

whose optimal value equals 1/OPT. Their approximation guarantees are often written in terms
of the additive error. We have translated their performances to the multiplicative error for a fair
comparison.

3Some of these solvers may still have a polylog(ρ) dependence. Since each occurrence of log(ρ)
can typically be replaced with log(nm) after slightly modifying the instance matrix A, we have done
so in Table 5.1 for a fair comparisons.

117

Problem Paper Total Work
Number of
Iterationsa

Notes

p/c LP [101] log2N
ε4
× (N log n) log2N

ε4

p/c LP [24, 25] log3N
ε4
×N log3N

ε4

p/c LP [165] log3N
ε4
×N log3N

ε4
mixed p/c

p/c LP [17] log4N
ε5
×N log4N

ε5
stateless

p/c LP [this paper] log2N
ε3
×N log2N

ε3
semi-stateless

p/c LP [165] logN
ε2
× (md+N) b logN

ε2
× (n+m) not parallelizable

p/c LP [166] logN
ε2
×N logN

ε2
× (n+m) not parallelizable

p/c LP [92] logN
ε2
× (n+m) +N logN

ε2
× (n+m) not parallelizable

p LP [6] logN log ε−1

ε
×N logN log ε−1

ε
× n not parallelizable

c LP [6] logN log ε−1

ε1.5
×N logN log ε−1

ε1.5
× n not parallelizable

Table 5.1: Comparisons among width-independent approximate solvers for positive
LPs.

aFor most parallelizable solvers, an iteration is dominated by a matrix-vector multiplicative that
can be implemented in O(N) total work. However, an iteration of Luby-Nisan is more complicated,
and to the best of our knowledge, we only know how to implement it in O(nm) or O(N log n) total
work, rather than O(N).

bd is the maximum number of constraints each variable is in; md may be larger than N .

coordinate by coordinate and therefore require at least a linear number of iterations

to converge. For instance, the algorithm of Koufogiannakis and Young [92] runs

in nearly-linear total time O
(
N + logN

ε2
× (n + m)

)
, but requires O(logN

ε2
(n + m))

iterations to converge to 1± ε approximate solutions. In contrast, as we shall discuss

later in Section 5.1.1, parallelizable solvers modify all coordinates of the candidate

LP solution at once per iteration, thus converging in a much smaller polylogarithmic

number of iterations. For this reason, the design of parallelizable solvers faces different

technical challenges from that of sequential ones, because the update rules are much

more restrictive. We have summarized prior results on sequential solvers in Table 5.1.

To sum up, despite the amount of work in this area, the O
(

log2N
ε4

)
-iteration-count

has not been improved since the original paper of Luby and Nisan. This lack of

progress constitutes a significant limitation, as the ε−4-dependence on the approxi-

mation parameter ε is particularly pour. The question of how to go beyond ε−4 has

been raised by Young [165] and remained open until now. In this paper, we give

an answer to this question and provide a brief empirical evaluation supporting the

idea that the performance gains achieved by our algorithm in the worst-case actually

translate into practice.

118

5.1.1 Our Results

In this paper, we present an algorithm PosLPSolver(A, ε) that runs only inO(logn·log(nm/ε)
ε3

)

iterations, and each iteration consists mostly of a matrix-vector multiplication so can

be implemented in O(logN) parallel depth. This is a total work of O
(logn·log(nm/ε)

ε3
·N
)
.

(See a full comparison between our and previous results in Table 5.1.) Besides being

the fastest parallel algorithm for solving positive LPs to date, our method also is

surprisingly simple and enjoys a ‘semi-stateless’ property, i.e. is stateless except for

requiring a global clock (see Appendix 5.B).

Our algorithms works by optimizing a relaxation of the original packing LP (see

Definition 5.1), where the hard constraint Ax ≤ 1 is replaced by an exponential

penalty function for violating the constraint.4 This initial step ensures that our

candidate iterative solutions remain approximately feasible throughout the evolution

of the algorithm. It also leads us to optimize our modified objective by updating our

current iterate x(k) using gradient information. This is done by computing a feedback

vector v so that vi
def
=
∑m

j=1Ai,j · exp
1
µ

((Ax)j−1)−1 ∈ [−1,∞) for each variable i ∈ [n],

and performing a multiplicative update xi ← xi · exp−α·T(vi). Here, our thresholding

function T(v) = v for v ∈ [−1, 1] \ [−ε, ε], T(v) = 0 for v ∈ [−ε, ε], and T(v) = 1 for

v > 1; and α = εµ
4

is some fixed constant.

Our Techniques. Our result fundamentally differs from all previous width-independent

solvers both in the algorithm specification and in its analysis. Like previous works,

we also update the coordinates of x simultaneously and multiplicatively. However,

previous methods treat all relevant coordinates alike, multiplying each of them either

by 1 + α or 1− α, for some fixed constant α. Instead, our use of the feedback vector

v (along with the thresholding function) allows us to update the coordinates by a

factor between e±α ≈ 1 ± α and e±εα ≈ 1 ± εα. This discriminative multiplicative

update rule is a key step in overcoming the 1/ε4 barrier.

More importantly, our work introduces a completely novel way of analyzing the

performance of our algorithm. More specifically, previous methods [101, 24, 165, 68]

fall into the following framework: the method is divided into Ω̃(1
ε2

) phases, with

each phase having a different parameter setting. Each phase itself consists of Ω̃(1
ε2

)

iterations. This immediately prevents their analyses from breaking the 1
ε4

barrier5.

In contrast, we interpret the packing LP problem as a purely optimization ques-

tion, i.e., to minimize f(x) for some convex function f . Next, in each iteration of the

algorithm, we interpret the feedback vector v as the gradient ∇f(x) ∈ [−1,∞)n, and

divide it into two components, the large component η ∈ [0,∞)n and the small (and

truncated) component ξ ∈ [−1, 1]n, satisfying ∇f(x) ≈ η + ξ. The key observation

now is to interpret our update xi ← xi · exp−α·T(vi) as performing two different kind

4This standard technique in optimization is used explicitly in [17] and implicitly in [101] and [165].
5Although the algorithm in [17] does not explicitly require phases, its convergence analysis divides

the iterations into Ω(log2N
ε3) phases each with Ω(log2N

ε2) iterations.

119

of steps at the same time:

• a “gradient descent”6 step (on η), to ensure that f(x) decreases by a large

amount at each step; and

• a mirror descent step (on ξ), to ensures that the average regret of the history

of the steps is small.

Both gradient and mirror descent are well-known tools from optimization (see for

instance [117, 27] and, for starters, mirror descent is a generalization of multiplica-

tive weight updates). This ‘duality’ view allows us to combine the analysis of both

gradient and mirror descent for a faster algorithm, and is the key to bypass the com-

binatorial/phaseful analysis used by all previous results. More generally, the same

authors of this paper observed that gradient and mirror descent have complementary

performances, and coupling these two methods often leads to better running times [5]

(see also Chapter 4).

We develop two more techniques that may be of independent interests, one for

the gradient descent analysis and one for the mirror descent analysis. In our gradient

descent view, since f(x) does not satisfy any Lipschitz gradient property, the classical

convergence analysis of gradient descent (see [117]) no longer applies.7 Instead, we

adopt a multiplicative Lipschitz gradient property : if each coordinate of x changes

multiplicatively by a little, the gradient does not change too much multiplicatively as

well. This property enables us to produce a promise on the decrease of the objective

f(x) in each step.

In our mirror descent analysis, we have developed a gradient truncation technique

that removes large components from the gradient, delegating their contribution to

the gradient descent analysis. This effectively reduces the width experienced by our

mirror descent algorithm.

Finally, we emphasize that our optimization view for solving positive LPs should

be seen as yet another example on designing combinatorial algorithms based on in-

sights from optimization. Before our work, the updates on x are maximally aggressive,

since they arise naturally from a combinatorial approach to the solution of the origi-

nal LP program. In our algorithm, we have smoothed out the updates on x so that,

for coordinates whose absolute feedbacks |vi| are small, we perform less aggressive

steps. While one may find such intuition very legitimate, without the optimization

interpretation behind it, it is very hard to analyze the resulting algorithm or even

to find the right step length. For instance, the algorithm of [17] is similar to ours

6It is important to note here that we have generalized the notion of “gradient descent” to indicate
any descent step that is guaranteed to decrease the objective. This is in contrast to mirror descent,
that does not necessarily decrease the objective at each iteration.

7The Lipschitz gradient property (also known as Lipschitz smooth property in the literature)
says that ‖∇f(x1)−∇f(x2)‖ ≤ L · ‖x1 − x2‖ for some constant L and some special choice of norm.
If one forces f(x) to satisfy this property, the algorithm falls into the category of [118] and becomes
width-dependent.

120

in terms of the updates on x. However, the simple difference between the choices of

step length makes our algorithm faster than theirs, log2N/ε3 vs. log4N/ε5. More-

over, our step lengths are in fact less aggressive than theirs in terms of decreasing the

objective f(x). We also provide an empirical evaluation in Appendix 5.A to support

this comparison.

The Stateless Feature. Some parallelizable algorithms enjoy a desirable stateless

feature. Informally, this feature requires that the updates of each processor only de-

pend on the current feedback, and not on the history or on any global variable. The

only known stateless solver for positive LPs is due to Awerbuch and Khandekar [17],

but their method is much slower than that of Luby and Nisan (see Table 5.1). State-

less algorithms enjoy a number of features (P1) self-stabilization, (P2) robustness

against incremental adjustments, and (P3) no global clock. We point out that our

algorithm is ‘semi-stateless’ (introduced in Appendix 5.B): that is, it exhibits prop-

erties (P1) and (P2). Unfortunately, our current proof technique requires the use

of a global clock for the parallelized algorithm. Instead, [17] only requires that the

desired number of iterations are performed synchronously with the global clock, while

between consecutive iterations each processor can run on its own arbitrarily without

synchronization.

5.1.2 Roadmap

We transfer the positive LP problem into an optimization question in Section 5.2,

provide our packing LP solver in Section 5.3, and turn the same algorithm into a

covering LP solver in Section 5.4. We also provide a brief empirical evaluation com-

paring the performance of our algorithm against previous ones in Appendix 5.A. We

defer the argument of the semi-statelessness of our LP solver to Appendix 5.B. Some

missing proofs are included in the appendix.

5.2 Smoothing the Positive LP Objective
In this section we introduce the smoothed objective fµ(x) that we are going to min-

imize in order to approximately solve the packing LP, by turning each row of the

LP constraint Ax ≤ 1 into an exponential penalty function so that we only need to

require x ≥ 0 throughout the algorithm.

Let x∗ be any optimal solution of the packing LP (5.1). Throughout this paper,

we use indices i ∈ [n] for the columns of A, and j ∈ [m] for the rows of A. We denote

by A�i the i-th column vector of A, and Aj� the j-th row vector of A. We assume

without loss of generality that

min
i∈[n]
{‖A�i‖∞} = 1 , (5.3)

since otherwise one can scale A by a constant factor, and the solution OPT as well

as x∗ are only affected by this same constant factor.

121

We now introduce our smoothed objective fµ(x).

Definition 5.1. Letting parameter µ
def
= ε

4 log(nm/ε)
, we define the smoothed objective

fµ(x) as

fµ(x)
def
= µ

∑m
j=1 exp

1
µ

((Ax)j−1)−1Tx .

We wish to study the minimization problem on fµ(x), subject to the constraint

that each coordinate xi ≥ 0 is non-negative. We denote by x ≥ 0 this positive orthant.

Intuitively this objective fµ(x) should capture the original packing LP (5.1) ap-

proximately as follows. On one hand, we want to maximize 1Tx so the negative term

−1Tx shows up in fµ(x). On the other, if (Ax)j ≥ 1 + ε for some j, the exponential

penalty in fµ(x) introduces a value that is at least expε/µ = (nm/ε)4 and very large.

This means Ax ≤ (1 + ε)1 must be true if the objective fµ(x) is small.

We wish to point out that this is very different from the softmax function implicitly

used in [165], and is used as a potential function in [17]. More precisely, the standard

softmax function can be seen to arise as the Legendre dual of the negative entropy

over the simplex, while our potential function is actually the Legendre dual of the

negative generalized entropy over the positive quadrant. Our specific choice of this

objective enables us to deduce what we call the multiplicative Lipschitz gradient

property, described in (5.7).

We begin with several simple but important properties about OPT and fµ(x). In

short, they together imply that the minimum of fµ(x) is around −OPT, and if one can

approximately find the minimum of fµ(x) (up to an error O(εOPT)), this corresponds

to a (1 − O(ε))-approximate solution to the packing LP (5.1). Notice that we will

not be able to directly obtain a covering solution from this objective, and thus more

techniques will be introduced in Section 5.4.

Proposition 5.2.

(a) OPT ∈ [1, n].

(b) Letting x = (1− ε/2)x∗ ≥ 0, we have fµ(x) ≤ −(1− ε)OPT.

(c) Letting x(0) ≥ 0 be such that x
(0)
i = 1−ε/2

n‖A�i‖∞ for each i ∈ [n], we have fµ(x(0)) ≤
−1−ε

n
.

(d) For any x ≥ 0 satisfying fµ(x) ≤ 0, we must have Ax ≤ (1 + ε)1, and thus

1Tx ≤ (1 + ε)OPT.

(e) If x ≥ 0 satisfies fµ(x) ≤ −(1 − O(ε))OPT, then 1
1+ε

x is a (1 − O(ε))-

approximate solution to the packing LP.

(f) The gradient of fµ(x) can be written as

∇fµ(x) = ATy(x)− 1 where yj(x)
def
= exp

1
µ

((Ax)j−1) . (5.4)

(The proofs are straightforward and can be found in Appendix 5.C.)

122

Algorithm 2 PosLPSolver(A, ε)

Input: A ∈ Rm×n
≥0 , ε ∈ (0, 1/10].

Output: x ∈ R≥0 and ȳ ∈ Rm
≥0 .

1: µ← ε
4 log(nm/ε)

and α← εµ
4

. . parameters

2: x
(0)
i ←

1−ε/2
n‖A�i‖∞ for all i ∈ [n]. . initial vector x(0)

3: T ← 6 log(2n)
αε

. . number of iterations
4: for k ← 0 to T − 1 do
5: for i← 1 to n do
6: Compute the feedback vi ←

∑m
j=1 Ai,j · exp

1
µ

((Ax)j−1)−1

. in fact, vi = ∇ifµ(x(k)) = 〈A�i, y(x(k))〉 − 1 ∈ [−1,∞).

7: Update: x
(k+1)
i ← x

(k)
i · exp−α·T(vi). . see Definition 5.3 for the definition

of T(v)
8: end for
9: end for

10: return x(T)

1+ε
and ȳ =

∑T−1
i=0 y(x(k)). . recall that yj(x)

def
= exp

1
µ

((Ax)j−1)

5.3 Parallelizable Packing LP Solver
In this section we prove the approximation and convergence guarantee on our packing

LP algorithm. Although the same algorithm also produces a good covering LP solu-

tion, we defer such analysis to Section 5.4 because different techniques are required.

To describe our algorithm we first make the following choice of thresholding func-

tion

Definition 5.3. The thresholding function T : [−1,∞)→ [−1, 1] is defined as follows

T(v)
def
=


0, v ∈ [−ε, ε];
v, v ∈ [−1, 1] \ [−ε, ε];
1, v > 1.

Our algorithm is presented in Algorithm 2, and each of its iterations can be de-

scribed with x
(k+1)
i ← x

(k)
i · exp−α·T(vi), where we choose α = εµ/4 to be the step

length. (Throughout this paper, we use superscript x(k) to represent vector x at

iteration k, and subscript xi to represent the i-th coordinate of vector x.)

Our proof of the correctness of PosLPSolver is divided into three steps.

Step I: Gradient Descent. We interpret (see Section 5.3.1 for details) each update

x
(k+1)
i ← x

(k)
i · exp−α·T(vi) as a gradient descent step,8 and show that the objective

fµ(x) does not increase, or more strongly, always decreases by at least the following

amount:

8To be clear, in some literature, the gradient descent is referred only to x ← x − c · ∇f(x) for
some constant c. In this paper, we adopt the more general notion, and refer it to any step that
directly decreases f(x).

123

Lemma 5.4 (Gradient Descent). For any step k in PosLPSolver, letting B(k) ⊆ [n]

be the set of indices i such that ∇ifµ(x(k)) ≥ 1, the objective fµ(x) decreases by at

least

fµ(x(k))− fµ(x(k+1)) ≥ α

4
·
∑

i∈B(k) x
(k)
i · ∇ifµ

(
x(k)
)
≥ 0 .

Combining this with Proposition 5.2.c, we have fµ(x(k)) ≤ 0 for all k.

Note that the above gradient descent lemma does not follow from any classical theory

because our objective fµ(x) does not satisfy any good Lipschitz gradient property. In-

stead, we define and use a multiplicative Lipschitz gradient property for our objective,

which may be of independent interest.

Step II: Mirror Descent. We interpret (see Section 5.3.2 for details) each update

x
(k+1)
i ← x

(k)
i · exp−α·T(vi) as a mirror descent step.

A mirror descent step in optimization is any step from x to x′ that is of the form

x′ ← arg minz{Vx(z) + 〈α∇f(x), z − x〉}. Here, α > 0 is some step length, and

Vx(x̃) = w(x̃) − 〈∇w(x), x̃ − x〉 − w(x) is the Bregman divergence of some convex

distance generating function w(x).9 In this paper, we pick w(x)
def
=
∑

i∈[n] xi log xi−xi
to be the generalized entropy function, and accordingly, for every x, x̃ ≥ 0, let

Vx(x̃) =
∑

i∈[n]

(
x̃i log x̃i

xi
+ xi − x̃i

)
.

After verifying that our update is a mirror descent step, the next lemma easily follows

from the general theory of mirror descent.

Lemma 5.5 (Mirror Descent). Letting ξ
(k)
i

def
= T(∇ifµ(x(k))) ∈ [−1, 1] be the trun-

cated gradient, we have that for any u ≥ 0,

〈αξ(k), x(k) − u〉 ≤ α2OPT + Vx(k)(u)− Vx(k+1)(u) .

We emphasize here that it is important to use the truncated gradient ξ(k) ∈ [−1, 1]n in

the mirror descent instead of the full gradient ∇fµ(x(k)), because the latter may have

very large coordinates (whose magnitudes depend on the width of the matrix). This is

why all previous positive-LP solvers using mirror descent are width-dependent. Our

gradient truncation technique may be of independent interest.

Step III: Coupling. Finally, as argued in Section 5.3.3, we put together the two

lemmas above and derive the following coupled bound:

Lemma 5.6 (Coupling). For any u ≥ 0, we have

α(fµ(x(k))− fµ(u)) ≤ 〈α∇fµ(x(k)), x(k) − u〉
≤ 4(fµ(x(k))− fµ(x(k+1))) +

(
Vx(k)(u)− Vx(k+1)(u)

)
+ α · 2εOPT + α · ε1Tu .

Let us point out right away that Lemma 5.6 captures benefit of combining the two

9This w(x) is classically chosen to be any strongly convex function, such as w(x) = 1
2‖x‖

2
2 (and

in that case Vx(y) = 1
2‖x− y‖

2
2).

124

analyses. If fµ(x(k)) − fµ(x(k+1)) is large, we are making a large gradient descent

step because the objective greatly decreases. Or, if fµ(x(k)) − fµ(x(k+1)) is small

(for a number of consecutive iterations), we can telescoping the above inequality and

obtain a good upperbound on the average of fµ(x(k)).

We are now ready to state and prove our theorem for packing LP.

Theorem 5.7 (Packing LP). For T ≥ 6 log(2n)
αε

= Ω(logn·log(nm/ε)
ε3

), we have that

fµ(x(T)) ≤ −(1 − 5ε)OPT, and as a consequence, PosLPSolver(A, ε) produces an

output x = x(T)

1+ε
that is a (1−O(ε))-approximate solution for the packing LP (5.1).

Proof. We begin by telescoping the inequality in Lemma 5.6 for k = 0, 1, . . . , T − 1,

and choosing u = ũ
def
= (1− ε/2)x∗, which satisfies 1Tu ≤ OPT by the definition of x∗:

α
T−1∑
k=0

(fµ(x(k))− fµ(ũ)) ≤ 4(fµ(x(0))− fµ(x(T))) +
(
Vx(0)(ũ)−Vx(T)(ũ)

)
+αT · 3εOPT .

(5.5)

Notice that, the second term on the right hand side is upper bounded by

Vx(0)(ũ)− Vx(T)(ũ) ≤ Vx(0)(ũ) ≤
∑
i

ũi log
ũi

x
(0)
i

+ x
(0)
i

≤
∑
i

ũi log
1/‖A�i‖∞

(1− ε/2)/n‖A�i‖∞
+

1− ε/2
n‖A�i‖∞

≤ 1T ũ · log(2n) + 1 ≤ 2OPT · log(2n) . (5.6)

Here, we have used the fact that ũi ≤ 1
‖A�i‖∞ since Aũ ≤ 1.

From here, we want to prove that fµ(x(T)) ≤ −(1− 5ε)OPT by way of contradic-

tion. Suppose not, that is, fµ(x(T)) > −(1 − 5ε)OPT, we have fµ(x(0)) − fµ(x(T)) ≤
0 + (1− 5ε)OPT ≤ OPT, giving an upper bound on the first term on the right hand

side in (5.5). Substituting this and (5.6) to (5.5), and dividing αT on both sides, we

get

1

T

T−1∑
k=0

(fµ(x(k))− fµ(ũ)) ≤ 4

αT
(fµ(x(0))− fµ(x(T))) +

1

αT

(
Vx(0)(ũ)− Vx(T)(ũ)

)
+ 3εOPT

≤ 4OPT

αT
+

2OPT · log(2n)

αT
+ 3εOPT .

Finally, since we have chosen T ≥ 6 log(2n)
αε

, the above right hand side is no greater

than 4εOPT. This, by an averaging argument, tells us the existence of some k ∈
{0, 1, . . . , T − 1} with fµ(x(k)) ≤ fµ(ũ) + 4εOPT ≤ −(1 − 5ε)OPT (where we have

used fµ(ũ) ≤ −(1 − ε)OPT from Proposition 5.2.b). However, it contradicts to the

hypothesis that fµ(x(T)) > −(1 − 5ε)OPT because fµ(x(k)) ≥ fµ(x(T)) according

to Lemma 5.4. This finishes the proof that fµ(x(T)) ≤ −(1 − 5ε)OPT. The fact

that x(T)

1+ε
provides a (1 − O(ε)) approximate solution for the packing LP is due to

Proposition 5.2.e. �

125

5.3.1 The Gradient Descent Lemma

In this section, we are going to view our step x(k) → x(k+1) as a gradient descent step,

and prove Lemma 5.4.

Sketched Proof. Here, we adopt a generalized notion of gradient descent step,

and say that any step from x to x′ that decreases the objective is a gradient descent

step. Classically in optimization, if a convex function f(x) satisfies the so-called

Lipschitz gradient property, that is, ‖∇f(x1) − ∇f(x2)‖∗ ≤ L · ‖x1 − x2‖ for some

constant L (with respect to some norm ‖ · ‖ and its dual norm ‖ · ‖∗), then a gradient

descent step can provably decrease the objective by a considerable amount. (We refer

interested readers to our survey in [5] or Chapter 4 of this thesis.) Unfortunately,

this property is not obeyed by our objective fµ(x), so we make use of what we call

the multiplicative Lipschitz gradient property, that may be of independent interest

for convex optimization problems that have enough ‘non-negativity’.

In particular, we observe that:

In each iteration, PosLPSolver changes each coordinate of x multiplicatively by at

most a factor of 1±4α/3. Owing to our choice of the smoothed objective fµ(x), we

can prove that in this iteration, for each i satisfying |∇ifµ(x)| > ε, the coordinate

gradient

∇ifµ(x) is not changed by more than a multiplicative factor of 1± 0.5. (5.7)

Denoting by x = x(k) the vector before the update, and x′ = x(k+1) the one after,

let us now estimate the difference between fµ(x)− fµ(x′) using (5.7), and sketch the

proof of Lemma 5.4.

Since ∇fµ(x) is close enough to ∇fµ(x′) owing to (5.7), intuitively, we can show

that fµ(x) − fµ(x′) is (up to a constant factor) close to 〈∇fµ(x), x − x′〉 due to the

first-order approximation of fµ(x) around x. Now, since xi− x′i is positive only when

∇ifµ(x) is positive, and viceversa, we conclude that the difference fµ(x) − fµ(x′) ≈
〈∇fµ(x), x− x′〉 is non-negative.

Furthermore, when focusing only on the coordinates i such that ∇ifµ(x) ≥ 1 (i.e.,

i ∈ B(k)), we have that xi− x′i = xi(1− e−α) = Ω(α) · xi. This enables us to conclude

that the amount of difference fµ(x) − fµ(x′) is at least Ω(α) ·
∑

i∈B(k)
xi · ∇iµ(x),

arriving at the conclusion of Lemma 5.4.

Proof Details. The following proposition establishes the formal statement for (5.7).

Proposition 5.8. If fµ(x(k)) ≤ 0, for any x = τx(k) + (1− τ)x(k+1) where τ ∈ [0, 1]:

(a) xi ∈ x(k)
i · [1− 4α/3, 1 + 4α/3]

(b) yj(x) ∈ yj(x(k)) · [1− ε/2, 1 + ε/2]

(c) When |∇ifµ(x(k))| ≥ ε, we have that ∇ifµ(x) is between ∇ifµ(x(k))

2
and 3∇ifµ(x(k))

2
.

126

Proof.

(a) We can always write xi = x
(k)
i ·et for some t ∈ [−α, α] ⊆ [−1/4, 1/4]. According

to the fact that et ≤ 1 + 4t/3 for t ∈ [0, 1/4] and et ≥ 1 − t ≥ 1 − 4t/3 for

t ∈ [−1/4, 0], we must have xi ∈ x(k)
i · [1− 4α/3, 1 + 4α/3].

(b) Recall from (5.4) that yj(x) = exp
1
µ

((Ax)j−1). According to Proposition 5.2.d,

we have (Ax(k))j ≤ 1 + ε. Now, by the non-negativity of A and the previous

item, we have∣∣(Ax)j − (Ax(k))j
∣∣ ≤ 4α/3 · (Ax(k))j ≤ 4α/3 · (1 + ε) ≤ 5α/3 .

This implies that yj(x) ≥ yj(x
(k)) · exp(−5α/3µ) = yj(x

(k)) · exp(−5ε/12) >

yj(x
(k)) · (1 − ε/2) for sufficiently small ε, as well as that yj(x) ≤ yj(x

(k)) ·
exp(5α/3µ) < yj(x

(k)) · (1 + ε/2).

(c) Recall from (5.4) that ∇ifµ(x) =
(
ATy(x)

)
i
− 1. By symmetry, we only prove

the case when ∇ifµ(x(k)) ≥ ε, which is equivalent to
(
ATy(x(k))

)
i
≥ 1 + ε. By

the previous item, we immediately have(
ATy(x(k))

)
i
(1 + ε/2) ≥

(
ATy(x)

)
i
≥
(
ATy(x(k))

)
i
(1− ε/2) .

Denoting by t =
(
ATy(x(k))

)
i
− 1 ≥ ε, it is not hard to verify that (t + 1)(1−

ε/2) ≥ t/2 + 1 and (t+ 1)(1 + ε/2) ≤ 3t/2 + 1 for all t ≥ ε, which then implies

3∇ifµ(x(k))

2
= 3t/2 ≥

(
ATy(x)

)
i
− 1 ≥ t/2 =

∇ifµ(x(k))

2
�

We can now use the above multiplicative Lipschitz gradient property to prove the

desired gradient descent progress promised in Lemma 5.4.

Proof of Lemma 5.4. We prove by induction. Suppose that Lemma 5.4 is true for all

indices less than k. This implies, in particular, that fµ(x(k)) ≤ fµ(x(k−1)) ≤ · · · ≤
fµ(x(0)) ≤ 0.

We compute the objective difference by the standard integral over gradients as

follows.

fµ(x(k))− fµ(x(k+1)) =

∫ 1

0

〈
∇fµ

(
x(k+1) + τ(x(k) − x(k+1))

)
, x(k) − x(k+1)

〉
dτ

=
∑
i

∫ 1

0

∇ifµ
(
x(k+1) + τ(x(k) − x(k+1))

)
dτ × (x

(k)
i − x

(k+1)
i) ≥ 0

(5.8)

Here the last inequality is because, whenever x
(k)
i − x

(k+1)
i is strictly positive (resp.

strictly negative) for some coordinate i ∈ [n], it must be because ∇ifµ(x(k)) ≥ ε (resp.

≤ −ε) according to our algorithm. However, owing to Proposition 5.8.c, we have that

fµ
(
x(k+1) + τ(x(k) − x(k+1))

)
is also positive (resp. negative) for all τ ∈ [0, 1], since

∇ifµ(x(k)) is. (Here we used fµ(x(k)) ≤ 0.) This concludes that for each i, the i-th

127

component in (5.8), denoted by Wi
def
=
∫ 1

0
∇ifµ

(
x(k+1) + τ(x(k) − x(k+1))

)
dτ × (x

(k)
i −

x
(k+1)
i), is non-negative.

We next turn to lower bounding fµ(x(k))−fµ(x(k+1)) by computing a lower bound

on Wi for each i ∈ B(k). Indeed, recall that by the definition of our thresholding

function T(·), for each i ∈ B(k), the update on the i-th coordinate in x(k) is precisely

x
(k+1)
i ← x

(k)
i · exp−α. In such a case,

Wi = (1− e−α)x
(k)
i ×

∫ 1

0

∇ifµ
(
x(k+1) + τ(x(k) − x(k+1))

)
dτ

≥ (1− e−α)x
(k)
i ×

1

2
∇ifµ

(
x(k)
)

(using Proposition 5.8.c)

≥ α

4
· x(k)

i · ∇ifµ
(
x(k)
)
.

In sum, we conclude that∑
i

Wi ≥
α

4
·
∑
i∈B(k)

x
(k)
i · ∇ifµ

(
x(k)
)
. �

5.3.2 The Mirror Descent Lemma

In this section, we are going to view our step x(k) → x(k+1) as a mirror descent step,

and prove Lemma 5.5.

Recall that ξ
(k)
i

def
= T(∇ifµ(x(k))) ∈ [−1, 1] is the truncated gradient at step k, and

satisfies that ξ
(k)
i = ∇ifµ(x(k)) for all coordinates i such that ∇ifµ(x(k)) ∈ [−1, 1] \

[−ε, ε]. We can verify that our careful choice of x(k) → x(k+1) is in fact a mirror

descent step on the truncated gradient:

Claim 5.9.

x(k+1) = arg min
z≥0

{
Vx(k)(z) + 〈αξ(k), z − x(k)〉

}
. (5.9)

Proof. This can be verified coordinate by coordinate, because the arg min function is

over all possible z ≥ 0, where this constraint does not impose any inter-coordinate

constraint.

In other words, by substituting the definition of Vx(k)(z), we only need to verify

that

x
(k+1)
i = arg min

zi≥0

{(
zi log

zi

x
(k)
i

+ x
(k)
i − zi

)
+ αξ

(k)
i · (zi − x

(k)
i)

}
def
= arg min

zi≥0
{g(zi)} .

At this point, the univariate function g(zi) is convex and has a unique minimizer.

Since the gradient d
dzi
g(zi) = log zi

x
(k)
i

+ αξ
(k)
i , this unique minimizer is indeed zi =

x
(k)
i · exp−αξ

(k)
i , finishing the proof of Claim 5.9. �

After confirming that our iterative step in PosLPSolver is indeed a mirror descent

step, it is not hard to deduce Lemma 5.5 based on the proof of the classical mirror

descent analysis (see for instance [27]). However, we emphasize here that our choice of

128

the distance generating function w(x) is not strongly convex over the entire positive

orthant {x ∈ Rn : x ≥ 0}, and thus the our proof is not identical to the classical

theory. We have relied on, in fact, a ‘local’ strong convexity which we introduce and

is sufficient for our purpose (see (5.10)).

Proof of Lemma 5.5. We deduce the following sequence of inequalities:

〈αξ(k), x(k) − u〉 = 〈αξ(k), x(k) − x(k+1)〉+ 〈αξ(k), x(k+1) − u〉
¬

≤ 〈αξ(k), x(k) − x(k+1)〉+ 〈−∇Vx(k)(x(k+1)), x(k+1) − u〉
­
= 〈αξ(k), x(k) − x(k+1)〉+ Vx(k)(u)− Vx(k+1)(u)− Vx(k)(x(k+1))

®

≤
∑
i

(
αξ

(k)
i · (x(k) − x(k+1))− |x(k+1)

i − x(k)
i |2

2 max{x(k+1)
i , x

(k)
i }

)
+
(
Vx(k)(u)− Vx(k+1)(u)

)
¯

≤
∑
i

(α2ξ
(k)
i)2 ·max{x(k+1)

i , x
(k)
i }

2
+
(
Vx(k)(u)− Vx(k+1)(u)

)
(5.10)

°

≤ 2

3
α21Tx(k) +

(
Vx(k)(u)− Vx(k+1)(u)

)
±

≤ α2OPT +
(
Vx(k)(u)− Vx(k+1)(u)

)
Here, ¬ is due to the minimality of x(k+1) in (5.9), which implies that ∇Vx(k)(x(k+1))+

αξ(k) = 0. ­ is due to the triangle equality of Bregman divergence:

∀x, y ≥ 0, 〈−∇Vx(y), y − u〉 = 〈∇w(x)−∇w(y), y − u〉
= (w(u)− w(x)− 〈∇w(x), u− x〉)− (w(u)− w(y)− 〈w(y), u− y)〉)
− (w(y)− w(x)− 〈∇w(x), y − x〉)

= Vx(u)− Vy(u)− Vx(y) .

® is because Vx(y) =
∑

i yi log yi
xi

+ xi− yi ≥
∑

i
1

2 max{xi,yi} |xi− yi|
2. ¯ is by Cauchy-

Schwarz. ° is because we have x
(k+1)
i ≤ 4

3
x

(k)
i owing to Proposition 5.8.a. ± is

because we have 1Tx(k) ≤ 3
2
OPT owing to Proposition 5.2.d (and fµ(x(k)) ≤ 0 from

Lemma 5.5). �

Remark 5.10. The main difference between this proof and its classical counterpart in

optimization theory is inequality ® in (5.10). Recall that w(x) =
∑n

i=1 xi log xi − xi.
Since w(x) is known to be 1-strongly convex with respect to the `1-norm over the

simplex ∆ = {x ≥ 0 : 1Tx = 1}, we automatically have Vx(y) ≥ 1
2
‖x − y‖2

1 for

all x, y ∈ ∆, and this was the key step used in the classical analysis. In our case,

we no longer have this strong convexity because x, y 6∈ ∆. However, the fact that

Vx(y) ≥
∑

i
1

2 max{xi,yi} |xi−yi|
2 is in fact saying that w(x) is ‘locally’ 1-strongly convex

with respect to the ‖ · ‖x,2 norm, defined to be ‖w‖2
x,2

def
=
∑

iw
2
i /xi. This local

norm technique is very crucial in our analysis, and is the optimization-based intuition

behind the above lemma.

129

5.3.3 The Coupling Lemma

The main idea in our proof to Lemma 5.6 is to divide the gradient vector ∇f(x) ∈
[−1,∞)n into three components, the component containing large coordinates (i.e.,

bigger than 1), the component containing small coordinates (i.e., in [−1, 1] \ [−ε, ε],
and the component containing negligible coordinates (i.e., in [−ε, ε]). The large gra-

dients are to be taken care by the gradient descent lemma, the small gradients are to

be taken care by the mirror descent lemma. Formally,

Proof of Lemma 5.6. By convexity, the distance fµ(x(k))−fµ(u) for an arbitrary u ≥ 0

is upper bounded as follows:

α(fµ(x(k))− fµ(u)) ≤ 〈α∇fµ(x(k)), x(k) − u〉
= 〈αη(k), x(k) − u〉+ 〈αξ(k), x(k) − u〉+ 〈αζ(k), x(k) − u〉 , (5.11)

where

• ξ(k)
i

def
= T(∇ifµ(x(k))) ∈ [−1, 1] is the truncated gradient, capturing the small

coordinates.

• η(k)
i

def
=

{
∇ifµ(x(k))− ξ(k)

i , if ∇ifµ(x(k)) ≥ 1;

0, otherwise.

}
∈ [0,∞), capturing the large

coordinates.

• ζ(k)
i

def
= ∇ifµ(x(k))− ξ(k)

i − η
(k)
i ∈ [−ε, ε], capturing the negligible coordinates.

We analyze the three components of (5.11) one by one.

The ζ component is small: if fµ(u) ≤ 0, we have

〈αζ(k), x(k) − u〉 ≤ αε · (1Tx(k) + 1Tu) ≤ αε · (1 + ε)OPT + αε · 1Tu (5.12)

where the last inequality is because fµ(x(k)) ≤ 0 from Lemma 5.4.

The η component can be upper bounded with the help from our gradient descent

Lemma 5.4. Note that η
(k)
i only if i ∈ B(k) (where recall from Lemma 5.4 that B(k)

is the set of indices whose ∇ifµ(x(k)) is no less than 1). In particular, if i ∈ B(k) we

have η
(k)
i = ∇ifµ(x(k))− 1 < ∇ifµ(x(k)), and thus Lemma 5.4 gives

4(fµ(x(k))− fµ(x(k+1)))

α
≥
∑
i∈B(k)

x
(k)
i · ∇ifµ

(
x(k)
)
≥ 〈η(k), x(k)〉

=⇒ 〈αη(k), x(k) − u〉 ≤ 〈αη(k), x(k)〉 ≤ 4(fµ(x(k))− fµ(x(k+1)))

Finally, the ξ component is upper bounded by Lemma 5.5. Together, we obtain

α(fµ(x(k))− fµ(u)) ≤ 〈αη(k), x(k) − u〉+ 〈αξ(k), x(k) − u〉+ 〈αζ(k), x(k) − u〉

≤ 4(fµ(x(k))− fµ(x(k+1))) + α2OPT + Vx(k)(u)− Vx(k+1)(u) + αε · (1 + ε)OPT + αε1Tu

≤ 4(fµ(x(k))− fµ(x(k+1))) +
(
Vx(k)(u)− Vx(k+1)(u)

)
+ α · 2εOPT + α · ε1Tu . �

130

5.4 Parallelizable Covering LP Solver

Since a primal solution x satisfying fµ(x) ≈ −OPT does not translate into a dual

solution y of the covering LP (5.2), the results in Section 5.3 do not imply any good

approximate to the covering LP program. In fact, most of the previous results (except

Luby and Nisan) have encountered this similar problem, and thus needed a separate

algorithm to solve the covering LP. We show in this section that, in our same algorithm

PosLPSolver, once the average ȳ =
∑T−1

i=0 y(x(k)) is collected over all the iterations,

this ȳ is essentially an approximate solution to the covering LP.

The high level intuition behind this result is very clear. On one hand, the packing

LP (5.1) is dual to the covering LP (5.2). On the other hand, PosLPSolver falls into

a primal-dual framework: (a) the (primal) gradient descent ensures that the final

objective fµ(x(T)) is sufficiently small, while (b) the (dual) mirror descent ensures

that the average of the encountered gradients (which is a function on ȳ) is sufficiently

close to 0. If (a) gives rise to an approximate solution to the packing LP, then (b)

should, at least intuitively, give rise to a dual solution ȳ of the covering LP.

More formally, after telescoping Lemma 5.6 for k = 0, 1, . . . , T − 1, we have for

any u ≥ 0,

1

T

T−1∑
k=0

〈∇fµ(x(k)), x(k) − u〉

≤ 4

αT
(fµ(x(0))− fµ(x(T))) +

1

αT

(
Vx(0)(u)− Vx(T)(u)

)
+ 2εOPT + ε1Tu

≤ 4

αT
(fµ(x(0))− fµ(x(T))) +

1

αT
Vx(0)(u) + 2εOPT + ε1Tu . (5.13)

This upper bound (on the average regret) gives a lot of information about the average

gradient 1
T

∑
k∇fµ(x(k)), thanks to the arbitrary choice of u ≥ 0. For instance, if

most of the terms in (5.13) were zero and we had 1
T

∑T−1
k=0 〈∇fµ(x(k)),−u〉 ≤ 0, we

would have 1
T

∑
k∇fµ(x(k)) ≥ 0, which is equivalent to AT ȳ ≥ 1, the feasibility of

the covering LP. However, since there are five missing terms in this wishful example,

more careful studies are needed.

It is worth noting that the average ȳ only provides a (1 + O(ε)) approximation

to the covering LP when T ≥ Ω(log(nρ) log(nm/ε)
ε3

), where ρ is the width of A. This is

slightly worse than the T required in Algorithm 2, because log(nρ) may in principle

be slightly larger than log(n). We prove, however, if one is willing to perform a linear

time coordinate fixing on the output ȳ, then the same number of iterations from

Algorithm 2 is sufficient. This result requires a more careful choice of u ≥ 0 in the

above reasoning.

We defer all the technical details on the covering LP including the formal statement

of our theorem (see Theorem 5.13 on page 142) to Appendix 5.D.

131

Acknowledgements

We thank Jonathan Kelner, Yin Tat Lee, Richard Peng, and Neal Young for helpful

conversations. This material is based upon work partly supported by the National

Science Foundation under Grant CCF-1319460 and by a Simons Graduate Student

Award under grant no. 284059.

Appendix

5.A Empirical Evaluation

1.26

1.27

1.28

1.29

1.30

1.31

1.32

1 20001 40001 60001 80001

LP
 O

b
je

ct
iv

e

Number of iterations

Optimal
Awerbuch-Khandekar
Ours

(a) Advantage of discriminative multiplicative
updates.

1.312

1.313

1.314

1.315

1.316

1 20001 40001 60001 80001

LP
 O

b
je

ct
iv

e

Number of iterations

(b) Our algorithm performed on different ε.

1.310

1.312

1.314

1.316

1 10001 20001 30001 40001

LP
 O

b
je

ct
iv

e

Number of iterations

Optimal
Ours + AutoStep
Ours
Luby-Nisan
Awerbuch-Khandekar + AutoStep

(c) Performance comparison on some small ε

1.310

1.312

1.314

1.316

1 20001 40001 60001 80001

LP
 O

b
je

ct
iv

e

Number of iterations

Optimal
Ours + AutoStep
Ours
Luby-Nisan
Awerbuch-Khandekar + AutoStep

(d) Performance comparison on even smaller ε

Figure 5-1: Empirical Evaluations

5.A.1 AutoStep: Automatic Step-Length Computation

We begin this section by describing an implementation trick that can be applied to

both our algorithm and Awerbuch and Khandekar [17]. Recall from (5.7) that, we

have chosen our α in PosLPSolver to be the (theoretically) most aggressive value

such that ∇ifµ(x) is not going to be affected multiplicatively by more than 1 ± 0.5.

In practice, however, this maximal step length α can be computed numerically during

each iteration, and can be made different among iterations.10 This automatic step-

length computation can also be applied to Awerbuch and Khandekar [17], and has

10It is even true that our theorems can be adapted to allow different α’s to be used, however, we
have chosen not to do so for the simplicity of our theoretical results.

132

already been implicitly applied to all other previous algorithms.11

5.A.2 Illustration

We perform some simple experiments to illustrate the performance of our new algo-

rithm with real data. We focus on the packing LP program with a randomly generated

matrix A ∈ R60×40 of 800 non-zero entries each in the range of [0, 10], whose optimal

value OPT = 1.31544. We have implemented the following five algorithms.

• Luby and Nisan [101].

• Awerbuch and Khandekar [17], with and without the AutoStep trick.

• Our PosLPSolver, with and without the AutoStep trick.

Importance of Discriminative Updates. We compare the solver of Awerbuch

and Khandekar with ours, to illustrate the importance of using discriminative mul-

tiplicative updates. (Recall that the algorithm of Awerbuch and Khandekar [17] is

very similar to ours, except that they update all the relevant coordinates by the same

factor, while we treat them differently and update a coordinate xi more slowly if its

feedback vi is small.) Figure 5-1(a) clearly confirms that this discrimination is very

important.

Role of the Smoothed Objective. Notice that, for our algorithm PosLPSolver,

when the input parameter ε varies, the performance curves go across each other (see

Figure 5-1(b)). To be clear, with larger ε the curve goes up faster but converges to

a worse solution (see the bottommost green curve); while on the other hand, with

smaller ε the curve goes up slower but has the potential to converge to a better

solution (see the rightmost orange curve). This is because, for different values of ε,

our smoothed objective fµ(x) has its parameter µ dependent on ε, and therefore the

minimum points of fµ(x) will have different distances to the actual LP optimum.

(This behavior is in fact shared with all other methods as well.12 Therefore, to

conduct a fair experiment when comparing different algorithms in the next paragraph,

we tune the input parameters —via binary search— on each algorithm separately, so

as to make sure that they converge to the same value. Then, we plot the curves

corresponding to these input parameters.)

Performance Comparison. We illustrate the performance difference between

Luby-Nisan, our PosLPSolver (with and without AutoStep), and Awerbuch-Khandekar

11Other algorithms —namely, [101, 25, 165]— have implemented this automatic step-length
computation for a different purpose: they need it in their convergence analysis but we do not. This
is one of the reasons our algorithm PosLPSolver is much simpler than theirs. (In their algorithms,
the convergence analysis is quite combinatorial and works essentially as follows. In each iteration,
because the update rule is maximally aggressive, at least one of the inner products 〈Ai, x〉 is going
to be increased by a fixed additive amount. However, this increment cannot happen too many times
because otherwise at least one of the constraints will be violated.)

12All known methods are implicitly ‘smoothing’ the LP objective by some parameter, and then
performing the related updates. Therefore, none of our algorithms converge to the LP optimum.

133

with AutoStep. We have ignored Awerbuch-Khandekar in this comparison due to its

poor performance. We have chosen two quite small values of ε in order to clearly

see the performance difference between algorithms that have different dependencies

on ε. It is clear from Figure 5-1(c) and Figure 5-1(d) that our algorithm outper-

forms all others, and the practical performance of AutoStep is also considerable. It is

worth noting that the solution produced by PosLPSolver is much more stable than

Luby-Nisan (because we focus on the decreasing of some objective fµ(x) while their

algorithm is quite combinatorial), and each iteration of ours is at least 5 times faster

than theirs due to the simplicity of our algorithm.

5.B Semi-Stateless Feature of our Positive-LP Solver
One typical distributed setting for implementing a parallelizable positive-LP solver

is as follows.13 Suppose that there is an agent i controlling variable xi, and agent

i is assumed to know (1) (upper bounds on) m and n, (2) the i-th column of A,

and (3) the current “congestion” (Ax)j for those constraints j that agent i has non-

zero influence (i.e., for those j such that Ai,j > 0). These are the only information

disclosed to agent i.

It is not hard to verify that our PosLPSolver(A, ε), like most of the previous

results in Table 5.1, can be implemented in this distributed setting in log2N
ε3

synchro-

nized iterations.

Stateless Algorithms. Recently, distributed algorithms that are stateless have

received a lot of attention [17, 16, 18, 19]. In the language of positive LPs (see [17]),

the stateless requirement says that

“the decisions made by agents are not dependent on the past;

they are only dependent on the current local state observable to the agents.”

Although their definition is vague, statelessness implies the following three important

properties, and therefore to check if an algorithm is stateless, it suffices to verify them

one by one.

(P1) Self-stabilization. The algorithm is robust against adversarial but finite sequence

of “hard reset” events. This allows some agents to fall asleep for a finite period

of time, and then to wake up; or equivalently, it means that the algorithm does

not need to be initialized.

(P2) Robustness against incremental adjustments. Agents are allowed to join or leave

dynamically. This corresponds to zeroing out or introducing new columns in A,

without restarting other agents. Adding or deleting rows, or even modifications

to entries of A are similarly allowed.

13We refer interested readers to [17] for the strong motivations and practical examples for such
settings.

134

(P3) No global clock. Algorithms can proceed asynchronously without a global clock.

Before Awerbuch and Khandekar [17], all known parallelizable positive-LP solvers

are stateful, and do not satisfy any of the three properties above. In particular, the

width-independent ones are phaseful and have to inform each agent ‘which phase it

is in’ (and many of them only increase x throughout the process), while the width-

dependent ones (such as [131]) must keep track of the maximum violation in a con-

straint.

Our Semi-Stateless Positive-LP Solver. We wish to point out that our PosLPSolver

can be easily tuned to at least satisfy (P1) and (P2). However, our current analysis

still requires the agents to act synchronously and therefore needs a global clock. We

call any algorithm that satisfy (P1) and (P2) semi-stateless.14

Indeed, the only line we need to change in the algorithm PosLPSolver(A, ε) is to

let

x
(k+1)
i ← max

{
x

(k)
i · exp−α·T(vi) ,

δ

‖A�i‖∞

}
,

where δ is some small enough number such as δ = (ε/nm)5. This small modification

was also used in [17] to obtain stateless algorithms, and makes our algorithm robust

again arbitrarily chosen input. (For instance, adversarially chosen agents may ini-

tialize some coordinate xi to zero; without the introduction of δ, the value of xi will

freeze at zero since each step is only multiplicative.)

We ignore the formal proof of statelessness in this version of the paper because it

is routinary.

5.C Missing Proof of Proposition 5.2
Proposition 5.2.

(a) OPT ∈ [1, n].

(b) Letting x = (1− ε/2)x∗ ≥ 0, we have fµ(x) ≤ −(1− ε)OPT.

(c) Letting x(0) ≥ 0 be such that x
(0)
i = 1−ε/2

n‖A�i‖∞ for each i ∈ [n], we have fµ(x(0)) ≤
−1−ε

n
.

(d) For any x ≥ 0 satisfying fµ(x) ≤ 0, we must have Ax ≤ (1 + ε)1, and thus

1Tx ≤ (1 + ε)OPT.

(e) If x ≥ 0 satisfies fµ(x) ≤ −(1 − O(ε))OPT, then 1
1+ε

x is a (1 − O(ε))-

approximate solution for the packing LP.

(f) The gradient of fµ(x) can be written as

∇fµ(x) = ATy(x)− 1 where yj(x)
def
= exp

1
µ

((Ax)j−1) .

Proof.

14Technically speaking, the agents in our algorithm PosLPSolver do not have states as well, but
do need to use a virtual global state that is the clock.

135

(a) Suppose that i∗ is the column that achieves the smallest infinite norm ‖A�i‖∞
over all columns. Letting x be such that xi = 1 at i = i∗ and xi = 0 elsewhere,

we have obtained a feasible solution for the packing LP (5.1), owing to our choice

of mini∈[n]{‖A�i‖∞} = 1 in (5.3). This feasible x gives an objective 1Tx = 1,

showing that OPT ≥ 1.

On the other hand, for any solution x ∈ Rn
≥0 satisfying Ax ≤ 1, we must

have xi ≤ 1
‖A�i‖∞ for each i. Therefore, 1Tx ≤

∑
i

1
‖A�i‖∞ ≤ n, showing that

OPT ≤ n.

(b) We have 1Tx = (1−ε/2)OPT by the definition of OPT. Also, from the feasibility

constraint Ax∗ ≤ 1 in the packing LP, we have Ax − 1 ≤ −ε/2 · 1, and can

compute fµ(x) as follows:

fµ(x) = µ
∑
j

exp
1
µ

((Ax)j−1)−1Tx ≤ µ
∑
j

exp
−ε/2
µ −(1− ε/2)OPT

≤ µm

(nm)2
− (1− ε/2)OPT ≤ −(1− ε)OPT .

(c) Using the fact that Ax(0) − 1 ≤ −ε/2 · 1, we compute fµ(x(0)) as follows:

fµ(x(0)) = µ
∑
j

exp
1
µ

((Ax(0))j−1)−1Tx(0)

≤ µ
∑
j

exp
−ε/2
µ −1− ε/2

n
≤ µm

(nm)2
− 1− ε/2

n
≤ −1− ε

n
.

Above, we have used that 1Tx(0) ≥ x
(0)
i = 1−ε/2

n
, where i is the column such

that ‖A�i‖∞ = 1.

(d) To show Ax ≤ (1 + ε)1, we can assume that v = maxj((Ax)j − 1) ≥ 0 because

otherwise we are done. Under this definition, we have Ax ≤ (1 + v)1 and

therefore 1Tx ≤ (1 + v)OPT by the definition of OPT. We compute fµ(x) as

follows.

fµ(x) ≥ µ exp
v
µ −(1 + v)OPT ≥ µ((

nm

ε
)4)v/ε − (1 + v)n

=
ε

4 log(nm/ε)
((
nm

ε
)4)v/ε − (1 + v)n .

It is easy to see that the above quantity is positive whenever v ≥ ε, and

therefore, to satisfy fµ(x) ≤ 0 we must have v ≤ ε, which is equivalent to

Ax ≤ (1 + ε)1.

Finally, we notice that Ax ≤ (1+ε)1 implies 1Tx ≤ (1+ε)OPT by the definition

of OPT.

(e) For any x satisfying fµ(x) ≤ −(1−O(ε))OPT ≤ 0, owing to Proposition 5.2.d,

we first have that x is approximately feasible, i.e., Ax ≤ (1 + ε)1. Next,

136

because −1Tx ≤ fµ(x) ≤ −(1−O(ε))OPT, we know that x yields an objective

1Tx ≥ (1−O(ε))OPT. Letting x′ = 1
1+ε

x, we both have that x′ is feasible (i.e.,

Ax′ ≤ 1), and x′ has an objective 1Tx′ at least as large as (1−O(ε))OPT.

(f) Straightforward by some simple computation. �

5.D Parallelizable Covering LP Solver

We divide our results on the covering LP into two parts. In the first part (see

Section 5.D.1), we show that the objective 1T ȳ is close to OPT; in the second part

(see Section 5.D.2), we show that AT ȳ ≥ (1 − 2ε)1 is approximately feasible. Both

of our two steps rely on (5.13).

5.D.1 Objective Optimality

We now show that the covering LP objective 1T ȳ ≤ (1 + O(ε))OPT as long as T ≥
Ω(log(nm/ε)

ε3
). Note that this is smaller than that of T ≥ Ω(logn·log(nm/ε)

ε3
) required in

Theorem 5.7; however, as we shall see, it does not imply a faster convergence rate

for covering LP than packing LP, because obtaining the approximate feasibility (i.e.,

AT ȳ ≥ (1− 2ε)OPT) requires more iterations.

The following lemma can be deduced essentially by (1) substituting u = 0 into

(5.13), and (2) noticing that 〈∇fµ(x(k)), x(k)〉 ≈ 1Ty(x(k)) − 1Tx(k) is approximately

the duality gap at step k.

Lemma 5.11. For any T ≥ 6
αε

= Ω(log(nm/ε)
ε3

), we have that 1T ȳ ≤ (1 + 5ε)OPT.

Proof. Substituting u = 0 into inequality (5.13), and using the fact that Vx(0)(0) =

1Tx(0) ≤ 1, we obtain

1

T

T−1∑
k=0

〈∇fµ(x(k)), x(k)〉 ≤ 4

αT
(fµ(x(0))− fµ(x(T))) +

1

αT
+ 2εOPT (5.14)

We now respectively lower and upper bound the two sides of (5.14) as follows. One

one hand, using the definition of gradient, the left hand side of (5.14) is lower bounded

as

〈∇fµ(x(k)), x(k)〉 = 〈ATy(x(k)), x(k)〉 − 1Tx(k) = 〈y(x(k)), Ax(k)〉 − 1Tx(k)

=
∑
j

expµ((Ax(k))j−1) ·(Ax(k))j − 1Tx(k)

≥ (1− ε)
∑
j

expµ((Ax(k))j−1)−1Tx(k) −m · (ε

nm
)4

= (1− ε)1Ty(x(k))− 1Tx(k) −m · (ε

nm
)4 . (5.15)

Here, the (only) inequality is because if (Ax(k))j < 1− ε for some constraint j ∈ [m],

the corresponding expµ((Ax(k))j−1) ≤ exp−µ/ε = (ε
nm

)4 is very small.

137

On the other hand, since Ax(T) ≤ (1 + ε)1 by Proposition 5.2.d, we must have

1Tx(T) ≤ (1+ε)OPT, and thus fµ(x(T)) ≥ 0−(1+ε)OPT. This gives an upper bound

on the right hand side of (5.14) that is 4(1+ε)
αT

OPT + 1
αT

+ 2εOPT ≤ 3εOPT, due to

our choice of T ≥ 6
αε

.

Together, we deduce from (5.14) that

(1− ε) 1

T

∑
k

(
1Ty(x(k))− 1Tx(k)

)
−m · (ε

nm
)4 ≤ 3εOPT

=⇒ 1T

(
1

T

∑
k

y(x(k))

)
≤ 1

T

∑
k

1Tx(k) + 4εOPT ≤ (1 + ε)OPT + 4εOPT ,

where the last inequality is from 1Tx(k) ≤ (1 + ε)OPT for each k. �

5.D.2 Approximate Feasibility

The approximate feasibility is tricker to prove. Indeed, the first proof to come to

one’s mind only implies that for AT ȳ ≥ (1− 2ε)1 for T ≥ Ω(log(nρ) log(nm/ε)
ε3

). Here, ρ

is the largest entry of A (i.e., the width). This bound on T is slightly weaker than

that in Theorem 5.7 because log(nρ) may be larger than log(n). Fortunately, this

loss can be avoided thanks to one of the two fixes below:

• Width Reduction Pre-processing. One can modify the positive LPs

to ensure ρ = nO(1).15 However, this modification requires some initializa-

tion which, if implemented, would make our algorithm not semi-stateless (see

Appendix 5.B).

• Coordinate Fix Post-processing. We prove below that, for the same

requirement on T ≥ Ω(log(n) log(nm/ε)
ε3

) as Theorem 5.7, although AT ȳ may be

smaller than 1 − ε for some coordinate, one can safely raise some coordinates

of ȳ to obtain AT ȳ′ ≥ (1− ε)1, without increasing 1T ȳ too much.

More specifically,

Lemma 5.12. Let ρ = maxi,j |Ai,j|, and ȳ = 1
T

∑T−1
k=0 y(x(k)).

• If T ≥ max{ 6
αε
, log(4n2ρ)

αε
} = Ω

(log(nρ) log(nm/ε)
ε3

)
, we have AT ȳ ≥ (1− 2ε)1.

• If T ≥ 6 log(2n)
αε

= Ω(logn·log(nm/ε)
ε3

) (which is the same choice of T in PosLPSolver(A, ε)),

there exists some simple fix ȳ′ from FixCoord(A, ε, ȳ) (see Algorithm 3) satis-

fying

AT ȳ′ ≥ (1− 2ε)1 and 1T ȳ′ ≤ 1T ȳ + εOPT .

15This can be done informally as follows. Within a single column of A, if the largest and smallest
entries are off from either other by a factor more than nΩ(1), the smallest entry can be replaced with
zero without sacrificing too much accuracy. With this in mind, we can zero out “small” entries of
each column. Next, we can similarly zero out “large” columns across all columns, and re-scale A to
get ρ = nO(1).

138

Algorithm 3 FixCoord(A, ε, ȳ)

Input: A ∈ Rm×n
≥0 , ε ∈ (0, 1/10], and ȳ ∈ Rm

≥0.
Output: y ∈ Rm

≥0 that satisfies ATy ≥ 1.
1: ȳ′ ← ȳ.
2: for all i such that λi

def
= (AT ȳ)i − 1 + ε ≤ −ε do

3: Let j ∈ [m] be the largest entry in the i-th column, i.e., Ai,j = ‖A�i‖∞.
4: ȳ′j ← ȳ′j + −λi

Ai,j
.

5: end for
6: return ȳ′

1−2ε
.

The proof of this lemma is involved, but has a clear high level intuition behind it.

We extract from (5.13) out only those terms that have u in it, and rewrite (5.13)

as follows: (here we have used the definition of ∇fµ(x(k)) = ATy(x(k))− 1)

0 ≤ ?+
1

αT
Vx(0)(u) + 〈AT ȳ − 1 + ε1, u〉 . (5.16)

Now, suppose that AT ȳ ≥ (1 − 2ε)1 is violated, there must exist some coordinate i

such that (AT ȳ − 1 + ε1)i < −ε is very negative. In such as case, we let uk = 0 for

every k 6= i, and use the choice T ≥ Ω(log(nρ)
αε

). Inequality (5.16) is then simplified as

0 ≤ ?+O(ε
log(nρ)

) · (ui log ui− ui)− ε · ui. However, we can choose ui = (nρ)Ω(1) to be

very large, making the right hand side very negative. This contradicts to inequality

(5.16), and thus finishes the proof of AT ȳ ≥ (1− 2ε)1 for the first half of the lemma.

To obtain the second half, it is first easy to see that FixCoord(A, ε, ȳ) is computing

some ȳ′ satisfying AT ȳ′ ≥ (1−2ε)1, because ȳ′ is so constructed to fix every violation

of AT ȳ ≥ (1− 2ε)1. What is much harder to prove is that 1T ȳ′ ≈ 1T ȳ. In fact, this

can be obtained, after some careful computation, from (5.16) again. This time, we

carefully choose a different u: we identify all coordinates i such that (AT ȳ−1+ε1)i <

−ε, and let ui be large on all of them.

Proof of Lemma 5.12. This time, we rewrite (5.13) as

1

T

T−1∑
k=0

〈∇fµ(x(k)), x(k) − u〉 ≤ 4

αT
(fµ(x(0))− fµ(x(T))) +

1

αT
Vx(0)(u) + 2εOPT + ε1Tu

≤ 1

αT
Vx(0)(u) + 3εOPT + ε1Tu

where the last inequality comes from the fact that 4
αT

(fµ(x(0)) − fµ(x(T))) ≤ εOPT,

which we have already used once in the proof of Lemma 5.11. Let us define

φ(u)
def
=

1

αT
Vx(0)(u) +

1

T

T−1∑
k=0

〈∇fµ(x(k)), u− x(k)〉+ ε1Tu

and according to the inequality above we have φ(u) ≥ −3εOPT for any u ≥ 0.

139

Proof of the First Half of the Lemma. Recall from (5.15) that

〈∇fµ(x(k)), x(k)〉 ≥ (1−ε)1Ty(x(k))−1Tx(k)−m·(ε

nm
)4 ≥ −1Tx(k)−m·(ε

nm
)4 ≥ −(1+2ε)OPT

and therefore
1

αT
Vx(0)(u)+〈AT ȳ−1, u〉 = φ(u)+〈∇fµ(x(k)), x(k)〉 ≥ −3εOPT−(1+2ε)OPT ≥ −(1+5ε)n .

If there is some coordinate i∗ such that v
def
= (AT ȳ)i∗ − 1 + ε ≤ −ε, we substitute

u = (0, 0, . . . , x
(0)
i∗ · e−αvT , 0, . . . , 0) where ui∗ = x

(0)
i∗ · e−αvT into the above inequality,

and we get

1

αT

(
ui∗ log

ui∗

x
(0)
i∗

− ui∗ +
∑
i

x
(0)
i

)
+ v · ui∗ ≥ −(1 + 5ε)n .

Since the left hand side equals to 1
αT

(
− ui∗ +

∑
i x

(0)
i

)
by our choice of ui∗ , we

immediately obtain −ui∗ ≥ −(1 + 6ε)n · αT > −2n from it. Substituting in the

definition of ui∗ = x
(0)
i∗ · e−αvT ≥

1/2
n‖A�i‖∞ · e

αεT , we conclude that T < log(4n2‖A�i‖∞)
αε

.

However, this contradicts to our choice of T ≥ log(4n2ρ)
αε

. In other words, for T ≥
max{ 6

αε
, log(4n2ρ)

αε
}, we must have (AT ȳ)i − 1 + ε > −ε for all i, finishing the proof of

AT ȳ ≥ (1− 2ε)1.

Proof of the Second Half of the Lemma. This time, using the definition of φ(u)

and the convexity of fµ(x), we obtain

−3εOPT ≤ φ(u) ≤ 1

αT
Vx(0)(u) +

1

T

T−1∑
k=0

(fµ(u)− fµ(x(k))) .

From now on let us denote by ũ
def
= (1− ε/2)x∗. Recall that our earlier analysis yields

the following:

• fµ(ũ) ≤ −(1− ε)OPT owing to Proposition 5.2.b;

• fµ(x(k)) ≥ −(1 + ε)OPT, owing to Proposition 5.2.d and 1Tx(k) ≤ (1 + ε)OPT;

and

• Vx(0)(ũ) ≤ 2OPT · log(2n), owing to (5.6).

Together, we obtain that

− 3εOPT ≤ min
u≥0

φ(u) ≤ φ(ũ) ≤ 1

αT
Vx(0)(ũ) + 2εOPT ≤ 3εOPT . (5.17)

where the last inequality is from our choice of T ≥ 6 log(2n)
αε

.

Next we decompose φ(u) as follows. We let φ(u) =
∑

i φ
i(ui) + φ0, where

φi(ui)
def
=

1

αT

(
ui log

ui

x
(0)
i

+x
(0)
i −ui

)
+((AT ȳ)i−1+ε)·ui and φ0 def

=
1

T

T−1∑
k=0

〈∇fµ(x(k)),−x(k)〉

Let us denote by λ
def
= AT ȳ − 1 + ε1. Then, for each i such that λi ≤ −ε, we make

the choice u∗i
def
= x(0) · e−αλiT ; otherwise we choose u∗i = ũi.

140

Focusing on each i such that λi ≤ −ε, we have φi(u∗i) = 1
αT

(x
(0)
i − u∗i) and

φi(ũi) ≥ λiũi. This gives a lower bound on their difference

φi(ũi)− φi(u∗i) ≥
1

αT
(u∗i − x

(0)
i) + λiũi .

Before continuing to prettify the right hand side, we make a technical observation.

Letting T0
def
= 6 log(2n)

αε
so that T ≥ T0, we have

u∗i = x(0) · e−αλiT ≥ 1

2n‖A�i‖∞
·
(

(eαεT0)T/T0
)−λi/ε

≥ 1

‖A�i‖∞

((1

2n
· eαεT0

)T/T0)−λi/ε
≥ 1

‖A�i‖∞

(
(100n)T/T0

)−λi/ε
. (5.18)

Therefore, the lower bound on φi(ũi)− φi(u∗i) can be simplified as

φi(ũi)− φi(u∗i)
¬

≥ 1

αT
u∗i + λiũi −

ε

‖A�i‖∞
­

≥ 1

αT

1

‖A�i‖∞

(
(100n)T/T0

)−λi/ε
+ λiũi −

ε

‖A�i‖∞
®

≥ 1

αT

1

‖A�i‖∞

(
(100n)T/T0

)−λi/ε
+

2λi
‖A�i‖∞

¯

≥ 1

αT0

1

‖A�i‖∞
(100n)−λi/ε +

2λi
‖A�i‖∞

°

≥ 1

αT0

1

‖A�i‖∞
(100n)

−λi
ε

+
2λi
‖A�i‖∞

±

≥ −10λi
‖A�i‖∞

+
2λi
‖A�i‖∞

≥ −8λi
‖A�i‖∞

.

Here ¬ is using the fact that 1
αT
x

(0)
i ≤ ε · 1

n‖A�i‖∞ . ­ is using (5.18). ® is using the

fact that ũi ≤ 1
‖A�i‖∞ (due to the feasibility Au ≤ 1) and λi ≤ −ε. ¯ is obtained

by realizing that the left hand side of ¯ is minimized, over all possible T ≥ T0, at

T = T0. ° is obtained by realizing that (100n)t ≥ (100n)t for any t ≥ 1. ± is by the

definition of T0 = 6 log(2n)
αε

.

Finally, we combine this with (5.17) and get∑
i :λi≤−ε

−8λi
‖A�i‖∞

≤
∑

i :λi≤−ε

φi(ũi)−φi(u∗i) =
∑
i∈[n]

φi(ũi)−φi(u∗i) ≤ φ(ũ)−min
u≥0

φ(u) ≤ 6εOPT

and therefore ∑
i :λi≤−ε

−λi
‖A�i‖∞

< εOPT . (5.19)

Now we come to the last step of the lemma. For each coordinate i such that λi =

(AT ȳ)i − 1 + ε ≤ −ε, we find the corresponding j where Ai,j = ‖A�i‖∞, and push ȳj
up by an additive amount of −λi

Ai,j
. Letting ȳ′ be this new vector, we automatically

have that AT ȳ′ ≥ (1− 2ε)1, and moreover, 1T ȳ′ − 1T ȳ ≤ εOPT due to (5.19). �

It is now easy to see that Lemma 5.11 and Lemma 5.12 together imply that

141

Theorem 5.13 (Covering LP). For any T ≥ max{ 6
αε
, log(4n2ρ)

αε
} = Ω

(log(nρ) log(nm/ε)
ε3

)
,

we have that ȳ
1−2ε

is a (1 +O(ε))-approximate solution for the covering LP (5.2).

Alternatively, for any T ≥ 6 log(2n)
αε

= Ω(logn·log(nm/ε)
ε3

), letting

(x, ȳ) = PosLPSolver(A, ε) and y = FixCoord(A, ε, ȳ) ,

we have that y is a (1 +O(ε))-approximate solution for the covering LP (5.2).

142

Chapter 6

Nearly-Linear Time Positive LP

Solver with Faster Convergence

Rate

This chapter is based on the result published in [6], and its further edits

can be found at:

http: // arxiv. org/ abs/ 1411. 1124 .

Positive linear programs (LP), also known as packing and covering linear pro-

grams, are an important class of problems that bridges computer science, operation

research, and optimization. Efficient algorithms for solving such LPs have received

significant attention in the past 20 years [101, 131, 24, 165, 113, 32, 25, 118, 47, 17,

115, 10, 92, 166, 7]. Unfortunately, all known nearly-linear time algorithms for pro-

ducing (1+ε)-approximate solutions to positive LPs have a running time dependence

that is at least proportional to ε−2. This is also known as an O(1/
√
T) convergence

rate and is particularly poor in many applications.

In this paper, we leverage insights from optimization theory to break this long-

standing barrier. Our algorithms solve the packing LP in time Õ(Nε−1) and the cov-

ering LP in time Õ(Nε−1.5). At high level, they can be described as linear couplings

of several first-order descent steps. This is the first application of our linear cou-

pling technique (see [5] or Chapter 4) to problems that are not amenable to blackbox

applications known iterative algorithms in convex optimization. Our work also intro-

duces a sequence of new techniques, including the stochastic and the non-symmetric

execution of gradient truncation operations, which may be of independent interest.

6.1 Introduction

A generic packing linear program (LP) takes the form max{cTx : Ax ≤ b} where

c ∈ Rn
≥0, b ∈ Rm

≥0, and A ∈ Rm×n
≥0 ; similarly, a generic covering LP can be written as

143

http://arxiv.org/abs/1411.1124

min{bTy : ATy ≥ c}, with the same requirements on A, b, and c. We denote by N

the number of non-zero elements in matrix A. They are also known as positive LPs

as originally studied by Luby and Nisan [101].

Similar to Chapter 5, we assume without loss of generality that the LP is in its

standard form: b = 1 and c = 1.

Packing LP: maxx≥0{1Tx : Ax ≤ 1} ,
Covering LP: miny≥0{1Ty : ATy ≥ 1} .

Since the two programs are dual to each other, we denote by OPT their shared optimal

value. We say that x is a (1 − ε)-approximation for the packing LP if Ax ≤ 1 and

1Tx ≥ (1 − ε)OPT, and y a (1 + ε)-approximation for the covering LP if ATy ≥ 1

and 1Ty ≤ (1 + ε)OPT.

Of course, it is possible to adopt the general Interior Point or Ellipsoid Methods to

obtain approximate solvers with a log(1/ε) dependence on the number of iterations.

However, the computational cost of such algorithms is typically very high, as each

iteration requires the solution of a system of linear equations in ATA. As a conse-

quence, this approach is simply not suitable to the solution of large-scale problems.

To address this issue, researchers have developed iterative approximate solvers that

achieve a better dependence on the problem size (e.g., nearly-linear time N) at the

cost of having a poly(1/ε) dependence on the approximation parameter ε.

Fast approximate packing and covering LP solvers have been widely used in ap-

proximation algorithms (e.g., MinSetCover [101], MaxSet, MaxDiCut, Max-k-

CSP [158], bipartite matching), probabilistic checkable proofs [158], zero-sum matrix

games [118], scheduling [131], graph embedding [131], flow controls [24, 25], auction

mechanisms [169], wireless sensor networks [38], and many other areas. In addi-

tion, techniques developed in this line of research have also inspired many other

important results, most notably regarding fast algorithms for multi-commodity flow

problems [131, 63, 68, 103, 20].

Previous approximate solvers can be further divided into two classes (see Table 6.1).

Width-Dependent Solvers. These algorithms1 require a running time that is at

least N multiplied with ρ ·OPT, where ρ is the largest entry, i.e. the width, of matrix

A. Since OPT ≥ 1/ρ, this value ρ · OPT is at least 1. However, since OPT can

easily be as large as 1 or even more than n, this resulting running time is not poly-

nomial, but only pseudo-polynomial. More precisely, packing and covering LPs can

be solved in O(Nρ
2OPT2 logm

ε2
) time [131], or O(NρOPT logm

ε2
) time using negative-width

techniques [10]. These algorithms strongly rely on multiplicative weight updates and

only require “oracle-access” to the matrix A.

When A is given explicitly like in this paper, the number of iterations can be

1Note that most width-dependent solvers are studied under the minmax form of positive LPs,
whose optimal value equals 1/OPT. Their approximation guarantees are often written in terms of
additive error. We have translated their performances to multiplicative error for a fair comparison.

144

Paper Running Time
Width

Independent?

[131] O(N × ρ2OPT2 logm
ε2

) no

[10] O(N × ρOPT logm
ε2

) no

[118, 113] O(N × ρOPT logm
ε

) no

[32] O(N ×
√
Kn logm

ε
) no

[115, 47]: packing LP Õ(N ×
(
n+

√
n
ε

)
) no

[101, 24, 165, 25, 17,
7]

O(N × log2N
ε3

) at
best

yes

[165]
O((md+N)× logN

ε2
)

a yes

[24, 25] O(nm× logN
ε2

) yes

[166] O(N × logN
ε2

) yes

[92]
O(N + (n+m)×

logN
ε2

)
yes

[this paper]:
packing LP

O(N × logN log ε−1

ε
) yes

[this paper]:
covering LP

O(N × logN log ε−1

ε1.5
) yes

Table 6.1: Comparisons among iterative approximate solvers for packing and covering
LPs.

ad is the maximum number of constraints each variable is in; md may be larger than N .

reduced to O(ρOPT logm
ε

) by deploying more advanced optimization tools such as Nes-

terov’s accelerated gradient method [118], or Nemirovski’s mirror prox method [113].

Bienstock and Iyengar [32] have converted this dependence on ρOPT into a more be-

nign, yet linear dependence on n. More specifically, their running time isO(ε−1N
√
Kn logm)

where K is the maximum number of non-zeros per row of A. This is O(ε−1Nn
√

logm)

in the worst case. The results of [115, 47] have improved this convergence rate (for

packing LP only) to Õ(ε−1N
√
n), but at a cost of enduring an Õ(Nn)-time prepro-

cessing stage.

Width-Independent Solvers. In this paper, we are interested in a second, more

efficient class of methods, i.e. width-independent,2 truly polynomial-time approximate

solvers (see Table 6.1).

2Some of these solvers may still have a polylog(ρ) dependence. Since each occurrence of log(ρ)
can typically be replaced with log(nm) after slightly modifying the instance matrix A, we have done
so in Table 6.1 for a fair comparisons.

145

This line of research was initiated by a seminal paper of Luby and Nisan [101],

who gave an algorithm running in O
(
N log2N

ε4

)
time with no dependance on ρ. This is

the first nearly-linear-time approximate solver for solving packing and covering LPs,

and also the first to run in parallel in nearly-linear-work and polylogarithmic depth.

The parallel algorithm of Luby and Nisan was extended by a sequence of works

[24, 165, 17, 7]. Most notably, the algorithm of the same authors of this paper [7] (see

Chapter 5) runs in O(log2N
ε3

) iterations, each costing a matrix-vector multiplication

operation that can be implemented in O(N) total work and logarithmic depth.

The ideas of Luby and Nisan also led to sequential width-independent solvers

for packing and covering LPs [165, 25, 166, 92]. Most notably, the algorithm of

Koufogiannakis and Young [92] runs in time O
(
N + logN

ε2
× (n + m)

)
. Despite the

amount of work in this area, the O(1/ε2) convergence rate has not been improved

since 1997. On a separate note, Klein and Young [90] have shown that essentially

any Dantzig-Wolfe type algorithm has to pay for a O(1/ε2) convergence rate. This

lack of progress constitutes a significant limitation, as the ε−2-dependence on the

approximation parameter ε is particularly pour. This ε−2 dependence is also known

as the O(1/
√
T) convergence rate in the optimization language, because the error

decreases only at the rate ε ∝ 1/
√
T .

6.1.1 Our Results

Packing LP Solver. We present an algorithm PacLPSolver that can be imple-

mented to run in O(log(nm/ε) log(1/ε)
ε

N) total time. This gives the first nearly-linear

time solver for packing LP whose running time has an ε−1-dependence; this running

time is also known as the Õ(1/T) convergence rate in the optimization literature. No

nearly-linear time algorithm has achieved any convergence rate that is faster than

O(1/
√
T) before our work (see Table 6.1).

Interestingly, the maximum (weighted) bipartite matching is just one instance of a

packing LP. Therefore, our algorithm yields an Õ(mε−1) approximate algorithm and

an Õ(m
√
n) exact algorithm3 that arise purely from optimization for bipartite match-

ing, without the use of any dynamic trees. This matches the best known combinatorial

algorithms for maximum weighted bipartite matching. Any further improvement over

the dependence on ε−1 would result in a maximum matching algorithm that runs in

time m · õ(
√
n), which may require very significantly different ideas.

Our algorithms optimizes a relaxation of the original packing LP, where the hard

constraint Ax ≤ 1 is replaced by an exponential penalty function for violating the con-

straint. In other words, we reduce the problem of approximately solving packing LP

into approximately minimizing some function fµ(x) over the positive orthant x ≥ 0 —

see (6.3). This interpretation of the solution of packing and covering linear programs

3It is not hard to turn an Õ(mε−1) approximate algorithm into an Õ(m
√
n) algorithm, see for

instance [54].

146

was recently suggested by the same authors of this paper [7] (see Chapter 5). How-

ever, the techniques in our previous work [7] only lead to very slow sequential solvers

(see Table 6.1). Furthermore, to the best of our knowledge, our objective fµ(x) can-

not be turned into any class of smooth functions, and therefore traditional accelerated

gradient methods such as [116, 118] no longer apply. We thus need fundamentally

new ideas.

Our proposed algorithm is an iterative first-order method, and has a flavor of

“stochastic coordinate descent” (cf. [145, 61]). Suppose that we are given point x ≥ 0

at some iteration, and observe the gradient ∇f(x) ∈ [−1,∞)n. Then, we randomly

pick a coordinate i ∈ [m], and focus only on the coordinate gradient ∇if(x) ∈
[−1,∞). (In fact, we do not even need to compute ∇`f(x) for ` 6= i, thus ensuring

that each iteration can be implemented very efficiently.)

We divide∇if(x) = η+ξ, where η ∈ [0,∞) is the large component, and ξ ∈ [−1, 1]

is the small (and truncated) component. This gradient-truncation technique was

developed in our prior work [7], but has never been applied to coordinate gradient.

We perform essentially three coordinate descent steps.

• A gradient (descent) step with respect to η, guaranteeing a large decrement on the

objective.

• A mirror (descent) step and a gradient (descent) step, both with respect to ξ.

Both gradient and mirror descent are well-known tools from optimization (see for

instance [117, 27]).4 Motivated by the linear coupling technique developed in [5] (see

Chapter 4), we combine the analysis of the above three descent steps for a faster

algorithm.

To push through the idea sketched above, we also develop two independent tech-

niques. The redundant-constraint technique imposes an additional box constraint; it

requires each xi to be upper bounded by a carefully chosen constant ci. While this

constraint xi ≤ ci is provably redundant from the viewpoint of minimizing fµ(x), it

is surprisingly crucial for our linear coupling to work. Our gradient-mirror scaling

technique restricts our attention to a special type of gradient step, which is always a

constant factor of the mirror step. Our two techniques together play an important

role in enabling the three descent steps mentioned above to be effectively coupled.

Covering LP Solver. Unlike our most relevant prior work [7], it is not clear how

one can extract an (approximate) covering LP solution from the packing LP solver

mentioned above. There are at least two main issues behind this difficulty. Firstly,

the dual guarantee naturally arising from PacLPSolver is on the history of the full

gradients ∇f(xk), rather than the randomly selected coordinate gradients ∇if(xk),

4It is important to note here that we have generalized the notion of “gradient descent” to indicate
any descent step that is guaranteed to decrease the objective. This is in contrast to mirror descent,
which is a “dual approach” that does not necessarily decrease the objective at any iteration, but
minimizes the so-called regularized regret.

147

over all iterations k. As we mentioned earlier, it is computationally heavy to compute

full gradients. Secondly, even if the dual guarantee is on the coordinate gradients

∇if(xk), it is not clear how one can compute them efficiently in only nearly-linear

time.

We therefore are forced to design a new algorithm CovLPSolver that works directly

for covering LP. On one hand, this new algorithm relies on similar idea that are present

in PacLPSolver: the linear coupling of gradient and mirror steps and the gradient

truncation. On the other hand, we need a different version of the redundant-constraint

technique (over a simplex constraint), as well as a negative-width technique.

Our CovLPSolver can be implemented to run in O(log(nm/ε) log(1/ε)
ε1.5

N) total time.

This gives the first nearly-linear time solver for covering LP whose running time has

a faster dependence than ε−2 (or equivalently, the first one whose convergence rate is

faster than Õ(1/
√
T)).

6.1.2 Roadmap

We transfer the packing LP problem into a convex optimization question in Section 6.2,

and provide our packing LP solver in Section 6.3. We sketch the main ideas needed for

our covering LP solver in Section 6.4, and defer the technical details to Section 6.5 and

Section 6.6. Note that our PacLPSolver and CovLPSolver are stated in an implicit

optimization language, and their (efficient) implementation details will be addressed

in Appendix 6.E and Appendix 6.F.

6.2 Relaxation of the Packing Linear Program

Recall that, for input matrix A ∈ Rm×n
≥0 , the packing LP in its standard form is

maxx≥0{1Tx : Ax ≤ 1}. Let us denote by OPT the optimal value of this linear

program, and x∗ any optimal solution. We say that x is a (1− ε)-approximation for

the packing LP if Ax ≤ 1 and 1Tx ≥ (1− ε)OPT.

Throughout this paper, we use the indices i ∈ [n] to denote the columns of A,

and the indices j ∈ [m] to denote the rows of A. We let A�i be the i-th column

vector of A, and Aj� the j-th row vector of A. Given any vector x, we denote by

‖x‖A =
√∑

i∈[n] x
2
i · ‖A�i‖∞ the A-norm of x.

By scaling the matrix A and the optimum value, we can assume without loss of

generality that

min
i∈[n]
{‖A�i‖∞} = 1 . (6.1)

We can now restrict the range of values x and OPT can take using the following

simple fact.

Fact 6.1. Define the bounding box ∆
def
= {x ∈ Rn : xi ∈

[
0, 1
‖A�i‖∞

]
}. Under assump-

tion (6.1), we have OPT ∈ [1, n] and {x : x ≥ 0 ∧ Ax ≤ 1} ⊆ ∆.

148

Proof. Suppose that i∗ is the column that achieves the smallest infinite norm ‖A�i‖∞
over all columns. Letting x be such that xi = 1 at i = i∗ and xi = 0 elsewhere, we

have obtained a feasible solution for the packing LP (5.1), owing to our choice of

mini∈[n]{‖A�i‖∞} = 1 in (6.1). This feasible x gives an objective 1Tx = 1, showing

that OPT ≥ 1.

On the other hand, for any solution x ∈ Rn
≥0 satisfying Ax ≤ 1, we must have

xi ≤ 1
‖A�i‖∞ for each i. Therefore, 1Tx ≤

∑
i

1
‖A�i‖∞ ≤ n, showing that OPT ≤ n.

The inclusion {x : x ≥ 0 ∧ Ax ≤ 1} ⊆ ∆ is obvious, since if xi >
1

‖A�i‖∞ for some

i, that must violate the constraint Ax ≤ 1. �

This bounding-box constraint allows us to optimize over a bounded set for x.

Smoothed Objective. We now introduce the smoothed objective fµ(x) that we

minimize over ∆ in order to approximately solve the packing LP. This objective fµ(x)

turns each row of the non-smooth LP constraint Ax ≤ 1 into an exponential penalty

function so that we only need to require x ∈ ∆ throughout the algorithm. More

formally, the packing LP can be written as the following minimizaton problem by

introducing the Lagrangian variable y ∈ Rm:

min
x∈∆
−1Tx + max

y≥0
{yTAx− 1Ty} . (6.2)

The problem can be now smoothened by introducing a strongly concave regularizer

over y ≥ 0.

This is regularizer is usually taken to be the entropy function over all possible

y ≥ 0 satisfying 1Ty = 1, which yields the width-independent solvers in for instance

[118] and [113], and is closely related to that of the multiplicative weight update in

[10].

In this paper, we take this regularizer to be the generalized entropy H(y) =

−
∑m

j=1 yj log yj+yj over the first orthant y ≥ 0, and minimize the following smoothened

objective fµ(x) over x ∈ ∆:

fµ(x)
def
= −1Tx + max

y≥0
{yTAx− 1Ty + µ ·H(y) } . (6.3)

Above, µ > 0 is some smoothing parameter to be chosen later. By explicitly comput-

ing the maximization over y ≥ 0, fµ(x) can be rewritten as

Lemma 6.2. fµ(x) = µ
∑m

j=1 exp
1
µ

((Ax)j−1)−1Tx .

We wish to study the minimization problem on fµ(x) over x ∈ ∆. Intuitively fµ(x)

captures the original packing LP (5.1) as follows. Firstly, since we want to maximize

1Tx, the negative term −1Tx shows up in fµ(x). Secondly, if a packing constraint

j ∈ [m] is violated by ε, that is, (Ax)j ≥ 1 + ε, the exponential penalty in fµ(x)

introduces a penalty at least expε/µ; this will be a large penalty if µ ≤ O(ε/ log n).

Notice that this smoothed objective also appeared in previous works [7], albeit without

this smoothening interpretation and without the constraint x ∈ ∆.

149

The regularization of Lemma 6.2 will give us both some smoothness properties

for fµ(x), discussed in Lemma 6.6, and a regularization error, as we are now solving

an objective different from our original packing LP. This error is quantified in the

following lemma for our choice of µ. This follows a similar treatment in a previous

paper of the authors [7] and is proved in Appendix 6.A.

Proposition 6.3. Let µ = ε
4 log(nm/ε)

and x∗ be an optimal solution for the packing

LP (5.1). Then:

(a) fµ(u∗) ≤ −(1− ε)OPT for u∗
def
= (1− ε/2)x∗ ∈ ∆.

(b) fµ(x) ≥ −(1 + ε)OPT for every x ∈ ∆.

(c) If x ∈ ∆ satisfies fµ(x) ≤ −(1 − O(ε))OPT, then 1
1+ε

x is a (1 − O(ε))-

approximate solution to the packing LP.

In short, they together imply that the minimum of fµ(x) is around −OPT, and

if one can approximately find the minimum of fµ(x), up to a multiplicative error

1 ± O(ε), this corresponds to a (1 − O(ε))-approximate solution to the packing LP

(5.1).

Remark 6.4. We emphasize that our constraint xi ≤ 1
‖A�i‖∞ is essentially redundant

from the viewpoint of minimizing fµ(x): whenever x ≥ 0 and fµ(x) ≤ 0, one should

automatically have xi ≤ 1+ε
‖A�i‖∞ . However, this redundant constraint shall become

very crucial at the point we analyze the mirror-descent component our algorithm;

after all, mirror descent steps do not necessarily decrease the objective, and thus may

not guarantee fµ(x) ≤ 0.

Smoothness properties. Thanks to the smoothing of Lemma 6.2 and the choice

of regularizer, our objective fµ(x) enjoys a number of good smoothness properties.

First, it is differentiable and the gradient is easy to compute:

Fact 6.5. ∇fµ(x) = ATp(x)− 1 where pj(x)
def
= exp

1
µ

((Ax)j−1).

Second, fµ(x) enjoys two kinds of coordinate-wise smoothness properties in differ-

ent regimes. These will be extremely useful in applying gradient descent arguments

in Section 6.3.2, and are the main motivation for us to adopt the ‖ · ‖A norm for our

proposed algorithms. Its proof is a simple manipulation of the Hessian.

Lemma 6.6. Define the smoothness parameter L
def
= 4

µ
. Then, for every x ∈ ∆, and

every i ∈ [n]:

(a) If |∇ifµ(x)| ≤ 1, then for all λ ≤ 1
L‖A�i‖∞ , we have

∣∣∇ifµ(x+λei)−∇ifµ(x)
∣∣ ≤

L‖A�i‖∞ · |λ| .
(b) If |∇ifµ(x)| ≥ 1, then for all λ ≤ 1

L‖A�i‖∞ , we have ∇ifµ(x + λei) ≥
(

1 −
‖A�i‖∞L

2
|λ|
)
∇ifµ(x) .

Above, the first property is the same as the traditional (coordinate) Lipschitz-

150

smoothness property, i.e. the Lipschitz continuity of the (coordinate) gradient∇if(x),

but holds only conditionally and not for all x ≥ 0. The second property is a salient

characteristic of this work and requires the positivity of A. It can be seen as a

formalization of the “multiplicative Lipschitz” property used in our previous work [7].

Proof of Lemma 6.6. Using the fact that ∇ifµ(x) > −1 for all x, we have:∣∣∣ log
∇ifµ(x+ λei) + 1

∇ifµ(x) + 1

∣∣∣ =
∣∣∣ ∫ λ

0

∇2
iifµ(x+ νei)

∇ifµ(x+ νei) + 1
dν
∣∣∣

=
1

µ

∣∣∣ ∫ λ

0

(ATdiag{p(x+ νei)}A)ii
(ATp(x+ νei))i

dν
∣∣∣

≤ ‖A�i‖∞
µ
|λ| = ‖A�i‖∞L

4
|λ| .

The last equality holds as L = 4
µ
. This immediately implies the following multiplica-

tive bound:

e−
‖A�i‖∞L

4
|λ| ≤ ∇ifµ(x+ λei) + 1

∇ifµ(x) + 1
≤ e

‖A�i‖∞L
4

|λ|.

By our assumption on λ, we know that ‖A�i‖∞L
4
|λ| ≤ 1

4
, so that we can use the

approximation x ≤ ex − 1 ≤ 1.2x over x ∈ [−1
4
, 1

4
]. This yields the simpler bound:

−‖A�i‖∞L
4

|λ| ≤ ∇ifµ(x+ λei)−∇ifµ(x)

∇ifµ(x) + 1
≤ 1.2

‖A�i‖∞L
4

|λ|.

Now we are ready to prove the two points of the lemma.

(a) Assuming that ∇ifµ(x) ∈ (−1, 1], we have:∣∣∣∇ifµ(x+ λei)−∇ifµ(x)
∣∣∣ ≤ 2.4 · ‖A�i‖∞L

4
|λ| ≤ ‖A�i‖∞L|λ| .

(b) Assuming ∇ifµ(x) ≥ 1, we have

∇ifµ(x+λei) ≥ ∇ifµ(x)−‖A�i‖∞L
4

|λ|
(
∇ifµ(x)+1

)
≥
(

1−‖A�i‖∞L
2

|λ|
)
∇ifµ(x) .

�

Initialization. Iterative methods require the choice of a good starting point. We

have

Fact 6.7. Defining xstarti
def
= 1−ε/2

n‖A�i‖∞ for for each i ∈ [n], we have xstart ∈ ∆ and

fµ(xstart) ≤ −1−ε
n

.

Proof. Using the fact that Axstart − 1 ≤ −ε/2 · 1, we compute fµ(xstart) as follows:

fµ(xstart) = µ
∑
j

exp
1
µ

((Axstart)j−1)−1Txstart ≤ µ
∑
j

exp
−ε/2
µ −1− ε/2

n

≤ µm

(nm)2
− 1− ε/2

n
≤ −1− ε

n
.

151

Algorithm 4 PacLPSolver(A, xstart, ε)

Input: A ∈ Rm×n
≥0 , xstart ∈ ∆, ε ∈ (0, 1/10].

Output: x ∈ ∆.
1: µ← ε

4 log(nm/ε)
, L← 4

µ
, τ ← 1

3·nL and α0 ← 1
nL

. . parameters

2: T ← d3nL log(1/ε)e = O(n · log(nm/ε)·log(1/ε)
ε

). . number of iterations
3: x0 = y0 ← xstart, z0 ← 0.
4: for k ← 1 to T do
5: αk ← 1

1−τ αk−1

6: xk ← τzk−1 + (1− τ)yk−1.
7: Randomly select i ∈ [n] uniformly at random.

8: Define the vector ξ
(i)
k to be all-zero except at coordinate i, where it equals

Tp(∇ifµ(xk)).

9: zk ← z
(i)
k

def
= arg minz∈∆

{
1
2
‖z − zk−1‖2

A + 〈nαkξ(i)
k , z〉

}
. . See Proposition 6.13

10: yk ← y
(i)
k

def
= xk + 1

nαkL
(z

(i)
k − zk−1).

11: end for
12: return yT .

Above, we have used that 1Txstart ≥ xstarti = 1−ε/2
n

, where i is the column such that

‖A�i‖∞ = 1. �

6.3 Our Packing LP Solver
To describe our algorithm, we first make the following choice of thresholding function

Definition 6.8. The thresholding function Tp : [−1,∞)→ [−1, 1] is defined as follows

Tp(v)
def
=

{
v, v ∈ [−1, 1];

1, v > 1.

Our algorithm PacLPSolver starts with some initial vector x0 = y0 = xstart (intro-

duced in Fact 6.7) and z0 = 0, and is divided into T iterations. In each iteration, we

start by computing a weighted midpoint xk ← τzk−1 +(1−τ)yk−1 for some parameter

τ ∈ (0, 1), and then proceed to compute yk and zk as follows.

• Select i ∈ [n] uniformly at random, and let ξ
(i)
k = (0, . . . , 0,Tp(v), 0, . . . , 0)

be the vector that is only non-zero at coordinate i, where v = ∇ifµ(xk) =∑m
j=1 Aj,i exp

1
µ

((Axk)j−1)−1 ∈ [−1,∞).

• Perform a mirror (descent) step zk ← z
(i)
k

def
= arg minz∈∆

{
1
2
‖z − zk−1‖2

A +

〈nαkξ(i)
k , z〉

}
for some parameter αk � 1/n to be chosen later.

• Perform a gradient (descent) step yk ← y
(i)
k

def
= xk + 1

nαkL
(z

(i)
k − zk−1).

Above, the reason that the the two steps on yk and zk are named after “gradient step”

and “mirror step” will become clear in the follow-up sections. We use the superscript
(i) on ξ

(i)
i , y

(i)
k and z

(i)
k to emphasize that the value depends on the choice of i. We have

152

used generic parameters τ, αk, T in the above description and their precise values are

presented in Algorithm 4. 5

For readers familiar with accelerated first-order methods, the above triple sequence

{xk, yk, zk}k is reminiscent of Nesterov’s accelerated gradient method [118]. However,

our algorithm is not an instance of any variant of the known accelerated gradient

method. (This is so because, for instance, our objective fµ(x) is not globally Lipschitz

smooth.)

In fact, our algorithm PacLPSolver is strongly motivated by our linear-coupling

technique introduced in [5] (see Chapter 4), a technique that allows one to linearly

combine gradient and mirror steps for a better performance. This linear coupling

requires one to use a triple sequence {xk, yk, zk}k.

We emphasize here that our iterates xk, yk, zk never leave the bounding box ∆:

Lemma 6.9. We have xk, yk, zk ∈ ∆ for all k = 0, 1, . . . , T .

The proof of Lemma 6.9 is deferred to Appendix 6.B, and crucially relies on the

fact that our gradient and mirror steps are multiples of each other: y
(i)
k − xk =

1
nαkL

(z
(i)
k −zk−1). The key idea of this lemma was also known by Fercoq and Richtárik

[61].

We shall also prove in Section 6.E that

Lemma 6.10. Each iteration of PacLPSolver can be implemented to run in expected

O(N/n) time.

The key idea used in the implementation is to compute xk and yk only implicitly.

For instance, explicitly maintaining xk and computing p(xk) require O(N) time per

iteration, but representing xk implicitly as a linear combination of two less-frequently-

modified vectors reduces it to O(N/n).

In this section, we shall prove the following theorem in three steps.

Theorem 6.11. PacLPSolver(A, xstart, ε) outputs some yT satisfying

E[fµ(yT)] ≤ −(1− 3ε)OPT .

6.3.1 Step 1: Mirror Descent Guarantee

Since our update z
(i)
k = arg minz∈∆

{
1
2
‖z − zk−1‖2

A + 〈nαkξ(i)
k , z〉

}
—see Line 9 of

PacLPSolver— is written in the form of a mirror descent step from optimization, the

following inequality is a classical upper bound on the “regret” of mirror descent. Its

proof can be found in Appendix 6.B.

5We encourage the readers to ignore their specific values for now. Our specific choices of the
parameters shall become clearer and natural at the end of this section, and be discussed whenever
they are used.

153

Lemma 6.12.
〈
nαkξ

(i)
k , zk−1− u

〉
≤ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
+ 1

2
‖zk−1− u‖2

A− 1
2
‖z(i)
k −

u‖2
A .

Although defined in a variational way, it is perhaps beneficial to explicitly describe

how to implement this mirror step. Its proof is straightforward but can be found in

Appendix 6.B.

Proposition 6.13. If zk−1 ∈ ∆, the minimizer z = arg minz∈∆

{
1
2
‖z − zk−1‖2

A +

〈δei, z〉
}

for any scalar δ ∈ R and basis vector ei can be computed as follows:

1. z ← zk−1.

2. zi ← zi − δ/‖A�i‖∞.

3. If zi < 0, then zi ← 0; if zi > 1/‖A�i‖∞, zi ← 1/‖A�i‖∞.

4. Return z.

As a simple corollary, we have the following fact

Fact 6.14. We have |z(i)
k,i − zk−1,i| ≤

nαk|ξ
(i)
k,i|

‖A�i‖∞ and |y(i)
k,i − xk,i| = 1

nαkL
|z(i)
k,i − zk−1,i| ≤

|ξ(k)k,i |
L‖A�i‖∞ ≤

1
L‖A�i‖∞ .

6.3.2 Step 2: Gradient Descent Guarantee

We call our update rule y
(i)
k ← xk + 1

nαkL
(z

(i)
k − zk−1) a gradient descent step, because

the following lemma guarantees fµ(y
(i)
k) ≤ fµ(xk), that is, the objective only decreases;

moreover, the objective decreases at least by 1
2
〈∇fµ(xk), xk − y

(i)
k 〉.

Lemma 6.15. We have fµ(xk)− fµ(y
(i)
k) ≥ 1

2
〈∇fµ(xk), xk − y

(i)
k 〉. In particular, this

implies fµ(xk) ≥ fµ(y
(i)
k) because ∇ifµ(xk) and xk,i − y

(i)
k,i have the same sign, while

xk,` = y
(i)
k,` for ` 6= i.

Proof. Note that y
(i)
k = xk + λei for some step length λ such that |λ| ≤ 1

L‖A�i‖∞
according to Fact 6.14. We first prove this lemma in the case of ∇ifµ(xk) ∈ [−1, 1]

so that ξ
(i)
k,i = ∇ifµ(xk).

fµ(xk)− fµ(y
(i)
k) = fµ(xk)− fµ(xk + λei) = −

∫ λ

0

(
∇ifµ(xk + χei)

)
dχ

¬

≥
∫ λ

0

(
−∇ifµ(xk)− L‖A�i‖∞ · |χ|

)
dχ

= −∇ifµ(xk) · |λ| −
L‖A�i‖∞

2
· λ2

­

≥ −∇ifµ(xk) · |λ| −
L‖A�i‖∞

2
· |λ| ·

|ξ(k)
k,i |

L‖A�i‖∞

= −1

2
〈∇fµ(xk), y

(i)
k − xk〉 .

154

Above, ¬ uses Lemma 6.6.a, and ­ uses Fact 6.14.

Next, we turn to the case of ∇ifµ(xk) > 1.

fµ(xk)− fµ(y
(i)
k) = fµ(xk)− fµ(xk + λei) = −

∫ λ

0

∇ifµ(xk + χei)dχ

¬

≥
∫ λ

0

(
1− ‖A�i‖∞L

2
|χ|
)
∇ifµ(x)dχ

­

≥
∫ λ

0

1

2
∇ifµ(x)dχ =

1

2
〈∇fµ(xk), xk − y

(i)
k 〉 .

Above, ¬ uses Lemma 6.6.b and ­ uses |χ| ≤ |λ| ≤ 1
L‖A�i‖∞ . �

6.3.3 Step 3: Putting All Together

In the following, we denote by η
(i)
k ∈ Rn

≥0 the vector that is only non-zero at coordinate

i, and satisfies η
(i)
k,i = ∇ifµ(xk)− ξ(i)

k,i ∈ [0,∞). In other words, the full gradient

∇fµ(xk) = Ei[n∇ifµ(xk)] = Ei[nη(i)
k + nξ

(i)
k]

can be (in expectation) decomposed into the a large but non-negative component

η
(i)
k ∈ [0,∞)n and a small component ξ

(i)
k ∈ [−1, 1]n. Recall that η

(i)
k is the part of the

gradient that was truncated, and did not contribute to the mirror step (see Line 9 of

PacLPSolver). Next, for any u ∈ ∆, we can use a basic convexity argument and the

mirror descent lemma to compute that

αk(fµ(xk)− fµ(u)) ≤
〈
αk∇fµ(xk), xk − u

〉
=
〈
αk∇fµ(xk), xk − zk−1

〉
+
〈
αk∇fµ(xk), zk−1 − u

〉
=
〈
αk∇fµ(xk), xk − zk−1

〉
+ Ei

[〈
nαkη

(i)
k , zk−1 − u

〉
+
〈
nαkξ

(i)
k , zk−1 − u

〉]
¬
=

(1− τ)αk
τ

〈
∇fµ(xk), yk−1 − xk

〉
+ Ei

[〈
nαkη

(i)
k , zk−1 − u

〉
+
〈
nαkξ

(i)
k , zk−1 − u

〉]
(6.4)

­

≤ (1− τ)αk
τ

(fµ(yk−1)− fµ(xk))

+ Ei
[〈

nαkη
(i)
k , zk−1 − u

〉
+ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
+

1

2
‖zk−1 − u‖2

A −
1

2
‖z(i)
k − u‖

2
A

]
(6.5)

Above, ¬ is because xk = τzk−1 + (1 − τ)yk−1, which implies that τ(xk − zk−1) =

(1 − τ)(yk−1 − xk). ­ uses convexity and Lemma 6.12. This above computation is

motivated by [5] (see Chapter 4), and as we shall see below, it allows one to linearly

couple gradient and mirror steps.

Intuitively, the first (non-negative) term in the box of (6.5) is the loss introduced

by the large gradient η
(i)
k . This part was truncated so did not contribute to the

mirror step. The second (non-negative) term in the box is the loss introduced by

mirror descent on the small gradient ξ
(i)
k .

155

Now comes an important observation. As shown by Lemma 6.16 below, the per-

formance of the gradient step —that is, the objective decrease of fµ(xk) − fµ(y
(i)
k)—

is at least proportional to the loss incurred in the box.

Lemma 6.16.
〈
nαkη

(i)
k , zk−1−u

〉
+n2α2

kL·
〈
ξ

(i)
k , xk−y

(i)
k

〉
≤ 3nαkL·(fµ(xk)−fµ(y

(i)
k)) .

Since the proof of the above lemma is a careful case analysis and several simple

applications of Lemma 6.15, we defer it to Appendix 6.B. We make two important

remarks.

• First, Lemma 6.16 is why we stated in the introduction that our PacLPSolver

incorporates two gradient steps: one with respect to η
(i)
k and one with respect

to ξ
(i)
k . We have intentionally forced the two steps to be identical, in order to

present our algorithm more cleanly.6

• Second, to properly upper bound 〈nαkη(i)
k , zk−1 − u〉, one needs to have some

good upper bound the coordinates of zk−1. This is exactly the place we need our

redundant-constraint technique, which guarantees that each zk−1,i ≤ 1
‖A�i‖∞ .

Plugging the above lemma into (6.5), we have

αk(fµ(xk)− fµ(u)) ≤
〈
αk∇fµ(xk), xk − u

〉
¬

≤ (1− τ)αk
τ

(fµ(yk−1)− fµ(xk))

+ Ei
[
3nαkL · (fµ(xk)− fµ(y

(i)
k)) +

1

2
‖zk−1 − u‖2

A −
1

2
‖zk − u‖2

A

]
­

≤ αkfµ(xk) +
(
3nαkL− αk

)
fµ(yk−1)

+ Ei
[
− 3nαkL · fµ(y

(i)
k) +

1

2
‖zk−1 − u‖2

A −
1

2
‖zk − u‖2

A

]
. (6.6)

Above, ¬ is because we have chosen αk so that nαk ≤ nαT = 1
εL
≤ 1

4
; and ­ is

because we have chosen τ to satisfy 1
τ

= 3nL.

Next, recall that we have picked αk so that (3nL−1)αk = 3nL·αk−1 in Algorithm 4.

Telescoping (6.6) for k = 1, . . . , T and choosing u∗ = (1− ε/2)x∗, we have

−
∑T

k=1αkfµ(u∗) ≤ 3fµ(y0)− 3nαTL · E[fµ(yT)] + ‖z0 − u∗‖2
A ≤ −3nαTL · E[fµ(yT)] + OPT .

Here, the second inequality is due to fµ(y0) = fµ(xstart) ≤ 0 from Fact 6.7, and the

fact that

‖z0 − u∗‖2
A = ‖u∗‖2

A =
∑n

i=1(u∗i)
2 · ‖A�i‖∞ ≤

∑n
i=1(x∗i)

2 · ‖A�i‖∞ ≤
∑n

i=1 x
∗
i = OPT .

Finally, using the fact that
∑T

k=1 αk = αT ·
∑T−1

k=0

(
1 − 1

3nL

)k
= 3nαTL

(
1 − (1 −

1
3nL

)T
)
, we rearrange and obtain that

E[fµ(yT)] ≤
∑

k αk
3nαTL

fµ(u∗) +
1

3nαTL
OPT =

(
1− (1− 1

3nL
)T
)
fµ(u∗) +

1

3nαTL
OPT .

Choosing T = d3nL log(1/ε)e so that 1
nαTL

= (1 − 1
3nL

)T ≤ ε. Combining this with

6One can in fact separate the two gradient steps as xk → yk and xk → y′k, but that will make the
algorithm description only more involved.

156

the fact that fµ(u∗) ≤ −(1− ε)OPT < 0 (see Proposition 6.3.a), we obtain

E[fµ(yT)] ≤ (1− ε)fµ(u∗) + ε/3 · OPT < −(1− 3ε)OPT .

Therefore, we have finished proving Theorem 6.11. �
It is now straightforward (but anyways proved in Appendix 6.B) to use Markov

inequality to turn the expected guarantee in Theorem 6.11 into a probabilistic one:

Corollary 6.17. With probability at least 9/10, PacLPSolver(A, xstart, ε) outputs a

(1−O(ε)) approximate solution to the packing LP program. The expected running

time is O(log(nm/ε) log(1/ε)
ε

N).

6.4 Sketching the Main Ideas for Our Covering LP

Solver

For the reasons stated in the introduction, we are forced to build a covering LP solver

from scratch, rather than implicitly from PacLPSolver. We begin with a similar

relaxation of the covering LP (5.2). That is, we show in Appendix 6.5 that it suffices

to minimize

fµ(x)
def
= µ

∑m
j=1 exp

1
µ

(1−(Ax)j) +1Tx

over all x ≥ 0. For technical reasons, this objective is much harder to work with

than that of (6.3), because its gradient ∇fµ(x) ∈ (−∞, 1]n may be very negative.

(This is why our prior work [7] or Chapter 5 intentionally avoided to solve covering

LP directly.)

This time, we again pick a random coordinate i ∈ [n] at each iteration, and then

decompose∇if(xk) = ξ+η. Quite different from PacLPSolver, we define η ∈ (−∞, 0]

to be the (negative) large gradient component, and ξ ∈ [−
√
ε, 1] to be the small

gradient component. Our main idea is to perform

• a gradient (descent) step with respect to η, and

• a mirror (descent) step with respect to ξ.

Note that we have intentionally truncated the gradient ∇if(xk) at (negative)
√
ε,

rather than at 1 as in PacLPSolver. This is so because, as it is much harder to deal

with negative gradients in the covering LP case, we cannot perform both a mirror

and a gradient step anymore on the small component ξ, as it was in PacLPSolver;

instead, we can only perform a single mirror step on ξ. If ξ were between −1 and 1,

and even if η were always zero, classical theory of mirror descent (or multiplicative

weight update) could only imply that the mirror step converges at a rate of ∝ ε−2.

Instead, we discover that if we truncate the gradient to ξ ∈ [−
√
ε, 1], a negative-width

technique allows us to improve this convergence from ε−2 to ε−1.5. This is the first

time that this gradient truncation technique is performed non-symmetrically.

Due to this weaker truncation at −
√
ε instead of −1, our gradient step enjoys

157

a convergence rate that is only ∝ ε−1.5, matching that of the mirror step. This is

precisely why we truncate the gradient at
√
ε, as it provides the best truncation

tradeoff between gradient and mirror descent.

It is perhaps worth mentioning that our gradient step is equipped with an novel

analysis quite different from its classical counterpart in optimization theory. Tradi-

tionally, given convex function g(x), the convergence analysis only uses the simple

upper bound g(x) − g(x∗) ≤ 〈∇g(x), x − x∗〉 on the objective distance to optimum.

If g(x) = e−x is a univariate function, x = −1, and x∗ = −100, this upper bound

becomes e−1 ≈ e−1 − e−100 ≤ e−1 · 99, which is too weak to be used. This is the

place we need to use a distance-adjustment technique, which will effectively improve

the distance estimation to the optimum.

The detailed description and the analysis of our CovLPSolver can be found in

Appendix 6.6.

6.5 Relaxation of the Covering Linear Program

Recall that, for input matrix A ∈ Rm×n
≥0 , the covering LP in its standard form is

Covering LP: min
x≥0
{1Tx : Ax ≥ 1} .

Let us denote by OPT the optimal value to this linear program, and by x∗ any optimal

solution of the covering LP (5.2). We say that x is a (1 + ε)-approximation for the

covering LP if Ax ≥ 1 and 1Tx ≤ (1 + ε)OPT. In our covering LP solver, we assume

that some 2-approximate solution x] is given to the algorithm, and 1Tx] = OPT′ for

some OPT′ ∈ [OPT, 2OPT].7

Again, we use the indices i ∈ [n] for the columns of A, and the indices j ∈ [m] for

the rows of A. We denote by A�i the i-th column vector of A, and Aj� the j-th row

vector of A. We can assume without loss of generality that8

min
j∈[m]
{‖Aj�‖∞} = 1 . (6.7)

We now introduce the smoothed objective fµ(x) that we are going to minimize

in order to approximately solve the covering LP. We skip the details regarding how

it arises from a relaxation using the generalized entropy regularizer, because it is

essentially a repetition of Section 6.2.

This smoothed objective turns each row of the LP constraint Ax ≥ 1 into an

exponential penalty function so that we only need to require x ≥ 0 throughout the

algorithm.

7This can be obtained via for instance the covering LP solver from Young [166], whose running
time is O(N logN). It can be relaxed to any constant approximation rather than 2-approximation.

8We can do so because first of all, we can assume minj∈[n]{‖Aj�‖∞} > 0 since otherwise the
covering LP is infeasible. Next, we can scale A down by a factor of minj∈[n]{‖Aj�‖∞}; this also
scales down the optimal value OPT and solution x∗ by this same factor.

158

Definition 6.18. Letting parameter µ
def
= ε

4 log(nm/ε)
, we define the smoothed objective

fµ(x) as

fµ(x)
def
= µ

m∑
j=1

exp
1
µ

(1−(Ax)j) +1Tx

over the simplex x ∈ ∆
def
= {x ∈ Rn : xi ≥ 0 ∧ 1Tx ≤ 2OPT′}.

We wish to study the minimization problem on fµ(x), subject to the constraint

that each coordinate xi is non-negative and the coordinates sum up to at most

2OPT′. The intuition that this smoothed objective fµ(x) captures the original cov-

ering LP (5.2) is similar to that of the packing LP one. Note that our constraint

1Tx ≤ 2OPT′ is of course redundant; it will play some other important role in our

algorithm.

We begin with several simple but important properties about OPT and fµ(x). In

short, they together imply that the minimum of fµ(x) is around OPT, and if one can

approximately find the minimum of fµ(x) (up to an error O(εOPT)), this corresponds

to a (1 + O(ε))-approximate solution to the covering LP (5.2). Since the proofs of

these properties are completely analogous to their counterparts in packing LP, we

defer them to Appendix 6.C.

Proposition 6.19.

(a) OPT ∈ [1,m].

(b) fµ(u∗) ≤ (1 + ε)OPT for u∗
def
= (1 + ε/2)x∗ ∈ ∆.

(c) fµ(x) ≥ (1− ε)OPT for every x ≥ 0.

(d) Letting xstart = (1 + ε/2) · x] + (1
n
, . . . , 1

n
), we have 1Txstart ≤ 2OPT′ and

fµ(xstart) ≤ 4OPT.

(e) For any x ≥ 0 satisfying fµ(x) ≤ 2OPT, we must have Ax ≥ (1− ε)1.

(f) If x ≥ 0 satisfies fµ(x) ≤ (1+O(ε))OPT, then 1
1−εx is a (1+O(ε))-approximate

solution to the covering LP.

(g) The gradient of fµ(x) can be written as

∇fµ(x) = 1− ATp(x) where pj(x)
def
= exp

1
µ

(1−(Ax)j) (6.8)

6.6 Our Covering LP Solver

To describe our covering LP solver we make the following choice of the thresholding

function. Recall in the packing LP case, we have truncated each coordinate gradient

from [−1,∞) to [−1, 1]. For this covering LP case, we truncate each such gradient

from (−∞, 1] to [−β, 1], for some parameter β
def
=
√
ε. The reason for this choice of

β =
√
ε shall become clear in later sections; at high level,

√
ε is the best tradeoff

between gradient and mirror descent.

Definition 6.20. The thresholding function Tc : (−∞, 1]→ [−β, 1] is defined as fol-

159

lows

Tc(v)
def
=

{
v, v ∈ [−β, 1];

−β, v < −β.

Our algorithm CovLPSolver starts with the initial vector x0 = y0 = z0 = xstart

introduced in Proposition 6.19.d, and is divided into T iterations. In each iteration,

we start by computing a weighted midpoint xk ← τzk−1 + (1 − τ)yk−1 for some

parameter τ ∈ (0, 1), and then proceed to compute yk and zk as follows.

• Select i ∈ [n] uniformly at random, and let ξ
(i)
k = (0, . . . , 0,Tp(v), 0, . . . , 0)

be the vector that is only non-zero at coordinate i, where v = ∇ifµ(xk) =

1−
∑m

j=1Aj,i exp
1
µ

(1−(Axk)j) ∈ (−∞, 1].

• Perform a mirror (descent) step zk ← z
(i)
k

def
= arg minz∈∆

{
Vzk−1

(z) + 〈(1 +

γ)nαkξ
(i)
k , z〉

}
for some parameters γ � 1 and αk � 1/n, where Vx(y) =∑n

i=1 yi log yi
xi

+ xi − yi is the so-called Bregman divergence of the generalized

entropy function (see Proposition 6.28 below).

• Perform a gradient (descent) step yk ← y
(i)
k

def
= xk + δei for some value δ that is

zero if ∇ifµ(xk) < −β, and strictly positive otherwise. The precise definition

of δ can be found in the pseudocode described in Algorithm 5.

Above, the reason that the the two steps on yk and zk are named after “gradient step”

and “mirror step” will become clear in the follow-up sections. We use the superscript
(i) on ξ

(i)
i , y

(i)
k and z

(i)
k to emphasize that the value depends on the choice of i. We have

used generic parameters τ, αk, T in the above description and their precise values are

presented in Algorithm 5.9

Since the xstart satisfies 1Txstart ≤ 2OPT′ by Proposition 6.19.d, we have z0 =

xstart ∈ ∆. Also, the mirror descent step ensures that zk,i > 0 for all rounds k and

coordinates i, as well as zk ∈ ∆ for all rounds k. However, we note that xk and yk
may not necessarily lie inside ∆, but will always stay non-negative. We summarize

these properties as follows:

∀k ∈ {0, 1, . . . , T}, xk, yk ≥ 0, zk > 0, zk ∈ ∆ .

We shall also prove in Section 6.F that

Lemma 6.21. Each iteration of CovLPSolver can be implemented to run in expected

O(N/n) time.

The key idea is similar to that of the efficient implementation of PacLPSolver,

that is to implementation the updates implicitly.

In this section, we prove the following theorem in five steps.

9We encourage the readers to ignore their specific values for now. Our specific choices of the
parameters shall become clearer and natural at the end of this section, and be discussed whenever
they are used.

160

Theorem 6.22. CovLPSolver(A, xstart, ε) outputs some yT satisfying

E[fµ(yT)] ≤ (1 + 9ε)OPT .

6.6.1 Step 1: Distance Adjustment

Classically, using the convexity argument one can obtain fµ(xk)−fµ(u) ≤ 〈∇fµ(xk), xk−
u〉 for every u ∈ ∆. In particular, if u is the optimal point, the right hand side is a

simple upper bound on the objective distance from the current point fµ(xk) to the

optimum. This simple upper bound is essentially used by all the convergence analyses

for first-order methods.

In this section, we strengthen this upper bound in the special case of u = u∗
def
=

(1 + ε/2)x∗.

Define Ã be the adjusted matrix of A described as follows.

Definition 6.23 (Adjusted matrix Ã). For each row j ∈ [m], if (Au∗)j ≤ 2 then we

keep this row and define Ãj�
def
= Aj�. Otherwise, —that is, if (Au∗)j > 2— we define

Ãj�
def
= 2

(Au∗)j
· Aj� to be the same j-th row Aj�, but scaled down by a factor of 2

(Au∗)j
.

It is clear from this definition that

Aji ≥ Ãji for all i ∈ [n] and j ∈ [m], while (1 + ε)1 ≤ Ãu∗ ≤ 21.

We now strengthen the classical bound fµ(xk) − fµ(u) ≤ 〈∇fµ(xk), xk − u〉 as

follows.

Lemma 6.24 (Distance Adjustment).

fµ(xk)− fµ(u∗) ≤ 〈1− ATp(xk), xk − u∗〉+ 〈ÃTp(xk)− ATp(xk), u
∗〉+ εOPT

= 〈∇fµ(xk), xk − u∗〉+ 〈ÃTp(xk)− ATp(xk), u
∗〉+ εOPT

At high level, ignoring the negligible term εOPT on the right hand side, the above

upper bound strengthens the classical bound due to the extra term of 〈ÃTp(xk) −
ATp(xk), u

∗〉. This extra term is always non-positive since Ã ≤ A coordinate-wisely,

but may be very negative in certain cases.

The intuition behind the proof is to realize that the convexity inequality eb−ea ≤
〈eb, b − a〉 on the exponential function becomes far from tight when a � 0. For

instance, when b = 2 and a = −10, we have e2 − e−10 ≤ 12e2; when b = 2 and

a = −100, we only get e2 − e−100 ≤ 102e2. Although e−100 ≈ e−10, the two upper

bounds are off from each other by a factor of 10. Therefore, when necessary, we can

‘elevate’ a to some higher value in order to obtain a tighter upper bound. We defer

the detailed proof to Appendix 6.D.

6.6.2 Step 2: Gradient Truncation

Let us separate the indices i ∈ [n] into large and small ones.

161

Definition 6.25. We make the following definitions.

• Let ξk ∈ [−β, 1]n be the truncated gradient so that ξk,i = Tc(∇ifµ(xk)) for

each i ∈ [n].

• Let Bk
def
= {i ∈ [n] : ξk,i 6= ∇ifµ(xk)} be the set of large indices.

• Let ηk ∈ (−∞, 0]n be the large gradient so that ∇fµ(xk) = ξk + ηk. It is clear

that

ηk,i = 0 for every i 6∈ B, and ηk,i = (1 + β)− (ATp(xk))i for every i ∈ B.

• Let η̃k ∈ (−∞,∞)n be the adjusted large gradient so that

η̃k,i = 0 for every i 6∈ B, and η̃k,i = (1 + β)− (ÃTp(xk))i for every i ∈ B.

For the rest of this section, we denote by η
(i)
k = (0, . . . , 0, ηk,i, 0, . . . , 0), the vector that

is zero at all coordinates other than i, and equals to ηk,i at location i. We similarly

define ξ
(i)
k as well as η̃

(i)
k .

We next state the following key lemma that is very analogous to (6.4) from packing

LP. Note that if one uses η
(i)
k instead of η̃

(i)
k , the proof becomes identical to that of

(6.4). The reason that we can use η̃
(i)
k rather than η

(i)
k —thus giving a stricter upper

bound— is precisely due to the distance adjustment introduced in Lemma 6.24.

Lemma 6.26.

fµ(xk)− fµ(u∗) ≤ (1− τ)

τ
(fµ(yk−1)− fµ(xk)) + Ei

[
〈nξ(i)

k , zk−1 − u∗〉
]

+ Ei
[
〈nη̃(i)

k ,−u
∗〉
]

+ εOPT .

The proof of the above lemma is a simple repetition of that of (6.4), but replacing

the classical distance upper bound with our adjusted one. See Appendix 6.D for

details.

6.6.3 Step 3: Mirror Descent Guarantee

Our update z
(i)
k

def
= arg minz∈∆

{
Vzk−1

(z) + 〈(1 + γ)nαkξ
(i)
k , z〉

}
is, by its definition, a

mirror descent step. We begin by explaining an attempt that is too weak for obtaining

the ε−1.5 convergence rate.

Using the classical theory of mirror descent, it is not hard to repeat the proof of

Lemma 6.12 —although changing the distance function from ‖ · ‖2
A to Vx(y)— and

obtain that, for every u ∈ ∆,

Ei
[
αk
〈
nξ

(i)
k , zk−1 − u

〉]
≤ Vzk−1

(u)− Ei
[
V
z
(i)
k

(u)
]

+O(α2
kn)OPT .

The above inequality can be made true whenever ξi is between −1 and 1 for each

coordinate i, but only yields the known ε−2 convergence rate. Here, ±1 is also know

as the width from multiplicative-weight-update languages [10].

162

Fortunately, since we have required ξi to be only between −β and 1, the O(α2
kn)

factor can essentially be improved to O(α2
kβn). This is an improvement whenever

β � 1, and we call it the negative-width technique.10 Formally, we prove that

Lemma 6.27. Denoting by γ
def
= 2αTn, we have

Ei
[
αk
〈
nξ

(i)
k , zk−1 − u∗

〉]
≤ Vzk−1

(u∗

1 + γ

)
− Ei

[
V
z
(i)
k

(u∗

1 + γ

)]
+ 12OPT · γαkβ .

The proof can be found in Appendix 6.D.

Although defined in a variational way, it is perhaps beneficial to explicitly describe

how to implement this mirror step. The following proposition is straightforward but

anyways proved in Appendix 6.D:

Proposition 6.28. If zk−1 ∈ ∆ and zk−1 > 0, the minimizer z = arg minz∈∆

{
Vzk−1

(z)+

〈δei, z〉
}

for any scalar δ ∈ R and basis vector ei can be computed as follows:

1. z ← zk−1.

2. zi ← zi · e−δ.
3. If 1T z > 2OPT′, z ← 2OPT′

1T z
z.

4. Return z.

6.6.4 Step 4: Gradient Descent Guarantee

We claim that our gradient step xk → y
(i)
k never increases the objective for all choices

of i. In addition, it decreases the objective by an amount proportional to the adjusted

large gradient η̃
(i)
k .

Lemma 6.29. For every i ∈ [n], we have

(a) fµ(xk)− fµ(y
(i)
k) ≥ 0, and

(b) fµ(xk)− fµ(y
(i)
k) ≥ µβ

12
· 〈−η̃(i)

k , u
∗〉 .

The proof of Lemma 6.29 is quite technical and can be found in Appendix 6.D.

At high level, one would generally hope to prove that the gradient step decreases

the objective by an amount proportional to the large gradient η
(i)
k , rather than the

adjusted large gradient η̃
(i)
k . If that were true, the entire proof structure of our covering

LP convergence would become much closer to that of packing LP, and there would be

absolutely no need for the introduction of the distance adjustment in Section 6.6.1,

as well as the definitions of Ã and η̃.

Unfortunately, if one replaces η̃ with η in the above lemma, the inequality is far

from being correct. The reason behind it is very similar to that we have summarized

10This negative width technique is strongly related to [10, Definition 3.2], where the authors
analyze the classical multiplicative weight update method in a special case when the oracle returns
loss values only between −` and ρ, for ` � ρ. This technique is in fact related to a more general
theory of mirror descent, known as the local-norm convergence, that we have summarized in a
separate paper [4] which corresponds to Chapter 8 of this thesis.

163

in Section 6.6.1, and related to the unpleasant behavior of the exponential penalty

function.

6.6.5 Step 5: Putting All Together

Combining Lemma 6.26, Lemma 6.27, and Lemma 6.29, we obtain that

αk
(
fµ(xk)− fµ(u∗)

)
− αkεOPT

≤ (1− τ)αk
τ

(fµ(yk−1)− fµ(xk)) + Ei
[
αk〈nξ(i)

k , zk−1 − u∗〉
]

+ Ei
[
αk〈nη̃(i)

k ,−u
∗〉
]

≤ (1− τ)αk
τ

(fµ(yk−1)− fµ(xk)) + Vzk−1

(u∗

1 + γ

)
− Ei

[
V
z
(i)
k

(u∗

1 + γ

)]
+ 12OPT · γαkβ + Ei

[12αkn

µβ

(
fµ(xk)− fµ(y

(i)
k)
)]

Remark 6.30. Above, the quantity “12OPT · γαkβ” is the loss term introduced by

the mirror descent. Unlike the packing LP case —see (6.5)— this loss term is not

dominated by the gradient step. (If one could do so, this would turn our CovLPSolver

into an ε−1 convergence rate.)

The quantity “αk〈nξ(i)
k , zk−1 − u∗〉” is the loss introduced by the (adjusted) large

gradient η̃, and is dominated by our gradient step progress owing to Lemma 6.29.

This is similar to the packing LP case —see Lemma 6.16.

From here, let us use the special choice of τ = µβ
12n

. We obtain that

− αk
(
fµ(u∗) + εOPT

)
≤ 12γαkβOPT +

(1− τ)αk
τ

fµ(yk−1) + Vzk−1

(u∗

1 + γ

)
− Ei

[αk
τ
fµ(y

(i)
k) + V

z
(i)
k

(u∗

1 + γ

)]
.

Use the choice αk = αk−1

1−τ and telescoping the above inequality for k = 1, . . . , T , we

have

−
(T∑
k=1

αk
)(
fµ(u∗) + εOPT

)
≤
(T∑
k=1

αk
)
· 12γβOPT +

α0

τ
fµ(y0) + Vz0

(u∗

1 + γ

)
− αT

τ
E
[
fµ(yT)

]
.

We compute that
∑T

k=1 αk = αT ·
∑T−1

k=0 (1− τ)k = αT · 1−(1−τ)T

τ
< αT

τ
, and recall that

γ = 2αTn. Therefore, we rearrange and get

αT
τ
E
[
fµ(yT)

]
≤ αT

τ

(
fµ(u∗) + εOPT

)
+
αT
τ
· 12γβOPT +

α0

τ
fµ(y0) + Vz0

(u∗

1 + γ

)
,

=⇒ E
[
fµ(yT)

]
≤ fµ(u∗) + εOPT + 24αTnβOPT + (1− τ)Tfµ(y0) +

τ

αT
Vz0
(u∗

1 + γ

)
.

(6.9)

From this point, we need to use our special choice of the initial point x0 = y0 =

z0 = xstart (see Proposition 6.19.d), which implies that fµ(y0) ≤ 4OPT and 1Txstart ≤

164

4OPT. We also have

Vz0
(u∗

1 + γ

)
= Vxstart

(u∗

1 + γ

)
=

n∑
i=1

u∗i
1 + γ

log
u∗i

(1 + γ)xstarti

+ xstarti − u∗i
1 + γ

¬

≤
n∑
i=1

u∗i log(u∗i · n) + 4OPT
­

≤ (2 log(nm) + 4) · OPT .

Above, inequality ¬ follows because xstarti ≥ 1/n for all i ∈ [n] according to the

definition in Proposition 6.19.d; inequality ­ follows because u∗i ≤ (1 + ε/2)x∗i ≤
(1 + ε/2)OPT ≤ (1 + ε/2)m and 1Tu∗i = (1 + ε/2)OPT, as well as the fact that ε is

sufficiently small.

Finally, we choose β =
√
ε, αT = ε

12nβ
, and T = d 1

τ
log(1/ε)e. Substituting into

(6.9) all of these parameters, along with the aforementioned inequalities fµ(y0) ≤
4OPT and Vz0

(
u∗

1+γ

)
≤ (2 log(nm) + 4) · OPT, as well as fµ(u∗) ≤ (1 + ε)OPT from

Proposition 6.19.b, we obtain that

E
[
fµ(yT)

]
≤ (1 + ε)OPT+ εOPT+ 2εOPT+ εfµ(y0) +

µβ/12n

ε/12nβ
(2 log(nm) + 4)OPT

= (1 + 9ε)OPT .

This finishes the proof of Theorem 6.22. �
It is now straightforward to use Markov inequality to turn the expected guarantee

in Theorem 6.22 into a probabilistic one:

Corollary 6.31. With probability at least 9/10, CovLPSolver(A, xstart, ε) outputs a

(1 +O(ε)) approximate solution to the covering LP program. The expected running

time is O(log(nm/ε) log(1/ε)
ε1.5

N).

Proof. Since for every x ∈ ∆ it satisfies fµ(x) ≥ (1−ε)OPT according to Proposition 6.19.c,

we obtain that fµ(yT)− (1− ε)OPT is a random variable that is non-negative, whose

expectation E[fµ(yT) − (1 − ε)OPT] ≤ 10ε. By Markov bound, with at least proba-

bility 9/10, we obtain some yT satisfying fµ(yT) ≤ (1 +O(ε))OPT, which yields some

(1 +O(ε)) approximate solution according to Proposition 6.19.f.

The running time follows from our efficient implementation in Section 6.F. �

Appendix

6.A Missing Proofs for Section 6.2

Proposition 6.3. Let µ = ε
4 log(nm/ε)

and x∗ be an optimal solution for the packing

LP (5.1). Then:

(a) fµ(u∗) ≤ −(1− ε)OPT for u∗
def
= (1− ε/2)x∗ ∈ ∆.

(b) fµ(x) ≥ −(1 + ε)OPT for every x ∈ ∆.

165

(c) If x ∈ ∆ satisfies fµ(x) ≤ −(1 − O(ε))OPT, then 1
1+ε

x is a (1 − O(ε))-

approximate solution to the packing LP.

Proof.

(a) We have 1Tu∗ = (1 − ε/2)OPT by the definition of OPT. Also, from the

feasibility constraint Ax∗ ≤ 1 in the packing LP, we have Au∗ − 1 ≤ −ε/2 · 1,

and can compute fµ(u∗) as follows:

fµ(u∗) = µ
∑
j

exp
1
µ

((Au∗)j−1)−1Tu∗ ≤ µ
∑
j

exp
−ε/2
µ −(1− ε/2)OPT

≤ µm

(nm)2
− (1− ε/2)OPT ≤ −(1− ε)OPT .

(b) Suppose towards contradiction that fµ(x) < −(1+ε)OPT. Since fµ(x) > −1Tx,

it must satisfy that 1Tx > (1 + ε)OPT. Suppose that 1Tx = (1 + v)OPT for

some v > ε. By the definition of OPT, we must have that Ax < (1 + v)1 is

broken, and therefore there exists some j ∈ [m] satisfying that (Ax)j ≥ 1 + v.

In such a case, the objective

fµ(x) ≥ µ expv/µ−(1 + v)OPT =
ε

4 log(nm)

(
(
nm

ε
)4
)v/ε
− (1 + v)OPT

≥
((

(
nm

ε

)2

)v/ε − (1 + v)
)
OPT > 0

giving a contradiction to the assumption that fµ(x) < 0.

(c) Suppose x satisfies fµ(x) ≤ −(1 − O(ε))OPT ≤ 0 and we first want to show

Ax ≤ (1 + ε)1. Let us assume that v = maxj((Ax)j − 1) ≥ 0 because otherwise

we will have Ax ≤ 1. Under this definition, we have Ax ≤ (1+v)1 and therefore

1Tx ≤ (1 + v)OPT by the definition of OPT. We compute fµ(x) as follows.

fµ(x) ≥ µ exp
v
µ −(1 + v)OPT ≥ µ

(
(
nm

ε
)4
)v/ε
− (1 + v)n

=
ε

4 log(nm)

(
(
nm

ε
)4
)v/ε
− (1 + v)n .

It is easy to see that the above quantity is positive whenever v ≥ ε, and

therefore, to satisfy fµ(x) ≤ 0 we must have v ≤ ε, which is equivalent to

Ax ≤ (1 + ε)1.

Next, because −1Tx ≤ fµ(x) ≤ −(1 − O(ε))OPT, we know that x yields an

objective 1Tx ≥ (1 − O(ε))OPT. Letting x′ = 1
1+ε

x, we both have that x′

is feasible (i.e., Ax′ ≤ 1), and x′ has an objective 1Tx′ at least as large as

(1−O(ε))OPT. �

166

6.B Missing Proofs for Section 6.3

Lemma 6.9. We have xk, yk, zk ∈ ∆ for all k = 0, 1, . . . , T .

Proof. This is true at the beginning as x0 = y0 = xstart ∈ ∆ (see Fact 6.7) and

z0 = 0 ∈ ∆.

In fact, it suffices for us to show that for every k ≥ 0, yk =
∑k

l=0 γ
l
kzl for some

scalers γlk satisfying
∑

l γ
l
k = 1 and γlk ≥ 0 for each l = 0, . . . , k. If this is true, we

can prove the lemma by induction: at each iteration k,

1. xk = τzk−1 + (1− τ)yk−1 must be in ∆ because yk−1 and zk−1 are and τ ∈ [0, 1],

2. zk is in ∆ by the definition that zk = arg minz∈∆{· · · }, and

3. yk is also in ∆ because yk =
∑k

l=0 γ
l
kzl is a convex combination of the zl’s and

∆ is convex.

For the rest of the proof, we only need to show that yk =
∑k

l=0 γ
l
kzl for11

γlk =


(1− τ)γlk−1, l = 0, . . . , k − 2;(

1
nαk−1L

− 1
nαkL

)
+ τ
(
1− 1

nαk−1L

)
, l = k − 1;

1
nαkL

, l = k.

This is true at the base case because α0 = 1
nL

. It is also true at k = 1 because

y1 = x1 + 1
nα1L

(z1 − z0) = 1
nα1L

z1 +
(
1− 1

nα1L

)
z0. For the general k, we have

yk = xk +
1

nαkL
(zk − zk−1)

= τzk−1 + (1− τ)yk−1 +
1

nαkL
(zk − zk−1)

= τzk−1 + (1− τ)
(k−2∑
l=0

γlk−1zl +
1

nαk−1L
zk−1

)
+

1

nαkL
(zk − zk−1)

=
(k−2∑
l=0

(1− τ)γlk−1zl
)

+

((1

nαk−1L
− 1

nαkL

)
+ τ
(

1− 1

nαk−1L

))
zk−1 +

1

nαkL
zk .

Therefore, we obtain yk =
∑k

l=0 γ
l
kzl as desired.

It is now easy to check that under our definition of αk (which satisfies αk ≥ αk−1

and αk ≥ α0 = 1
nL

, we must have γlk ≥ 0 for all k and l. Also,

∑
l

γlk =
k−2∑
l=0

(1− τ)γlk−1 +

((1

nαk−1L
− 1

nαkL

)
+ τ
(

1− 1

nαk−1L

))
+

1

nαkL

11We wish to point out that this proof coincides with a lemma from the accelerated coordinate
descent theory of Fercoq and Richtárik [61]. Their paper is about optimizing an objective function
that is Lipschitz smooth, and thus irrelevant to our work.

167

= (1− τ)
(

1− 1

nαk−1L

)
+

((1

nαk−1L
− 1

nαkL

)
+ τ
(

1− 1

nαk−1L

))
+

1

nαkL
= 1 .

�

Lemma 6.12. When z
(i)
k = arg minz∈∆

{
1
2
‖z − zk−1‖2

A + 〈nαkξ(i)
k , z〉

}
, we have

〈
nαkξ

(i)
k , zk−1 − u

〉
≤ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
+

1

2
‖zk−1 − u‖2

A −
1

2
‖z(i)
k − u‖

2
A .

Proof. Denoting by Va(b) = 1
2
‖b−a‖2

A as a function of b ∈ ∆ parameterized at a ∈ ∆,

we have that ∇iVa(b) = ‖A�i‖∞ · (ai− bi). In the optimization language, Va(b) is also

known as the Bregman divergence of the ‖ · ‖2
A regularizer.

We deduce the following sequence of inequalities:〈
nαkξ

(i)
k , zk−1 − u

〉
=
〈
nαkξ

(i)
k , zk−1 − z

(i)
k

〉
+
〈
nαkξ

(i)
k , z

(i)
k − u

〉
¬

≤
〈
nαkξ

(i)
k , zk−1 − z

(i)
k

〉
+
〈
−∇Vzk−1

(z
(i)
k), z

(i)
k − u

〉
­
=
〈
nαkξ

(i)
k , zk−1 − z

(i)
k

〉
− 1

2
‖zk−1 − z

(i)
k ‖

2
A +

1

2
‖zk−1 − u‖2

A −
1

2
‖z(i)
k − u‖

2
A

®
= n2α2

kL
(〈
ξ

(i)
k , xk − yk

〉
− L

2
‖xk − yk‖2

A

)
+

1

2
‖zk−1 − u‖2

A −
1

2
‖z(i)
k − u‖

2
A

≤ n2α2
kL ·

〈
ξ

(i)
k , xk − yk

〉
+

1

2
‖zk−1 − u‖2

A −
1

2
‖z(i)
k − u‖

2
A .

Here, ¬ is due to the minimality of z
(i)
k = arg minz∈∆

{
Vzk−1

(z) +
〈
nαkξ

(i)
k , z

〉}
, which

implies that
〈
∇Vzk−1

(z
(i)
k) + nαξ

(i)
k , u − z

(i)
k

〉
≥ 0 for all u ∈ ∆. Step ­ is due to the

“three-point equality” of Bregman divergence (cf. [40]), which can be checked for

every coordinate ` ∈ [n] as follows:

−∇`Vzk−1
(z

(i)
k) · (z(i)

k,` − u`) = ‖A�i‖∞(zk−1,` − z
(i)
k,`) · (z

(i)
k,` − u`)

= ‖A�i‖∞
(
− 1

2
(zk−1,` − z

(i)
k,`)

2 +
1

2
(u` − zk−1,`)

2 − 1

2
(z

(i)
k,` − u`)

2
)
.

® is by our choice of yk which satisfies that zk−1 − z
(i)
k = nαkL(xk − y

(i)
k). �

Proposition 6.13. If zk−1 ∈ ∆, the minimizer z = arg minz∈∆

{
1
2
‖z − zk−1‖2

A +

〈δei, z〉
}

for any scalar δ ∈ R and basis vector ei can be computed as follows:

1. z ← zk−1.

2. zi ← zi − δ/‖A�i‖∞.

3. If zi < 0, then zi ← 0; if zi > 1/‖A�i‖∞, zi ← 1/‖A�i‖∞.

4. Return z.

Proof of Proposition 6.13. Let us denote by z the returned value of the described

procedure, and g(u)
def
= 1

2
‖u − zk−1‖2

A + 〈δei, u〉. Since ∆ is a convex body and g(·)

168

is convex, to show z = arg minz∈∆{g(z)}, it suffices for us to prove that for every

u ∈ ∆, 〈∇g(z), u− z〉 ≥ 0. Since the gradient ∇g(z) can be written explicitly, this is

equivalent to

δ(ui − zi) +
n∑
`=1

‖A�`‖∞ ·
(
z` − zk−1,`

)
· (u` − z`) ≥ 0 .

However, since z` = zk−1,` for every ` 6= i, this is equivalent to(
δ + ‖A�i‖∞ ·

(
zi − zk−1,i

))
· (ui − zi) ≥ 0 .

There are three possibilities here. If zi = zk−1,i − δ/‖A�i‖∞ then the left-hand side is

zero and we are done. Otherwise, if zi > zk−1,i − δ/‖A�i‖∞, then it must satisfy that

zi = 0; in such a case the left-hand side is the multiplication of two non-negatives,

and therefore non-positive. If zi < zk−1,i − δ/‖A�i‖∞, then it must satisfy that

zi = 1/‖A�i‖∞; in such a case the left-hand side is the multiplication of two non-

positives, and therefore non-positive. �

Lemma 6.16.
〈
nαkη

(i)
k , zk−1−u

〉
+n2α2

kL·
〈
ξ

(i)
k , xk−y

(i)
k

〉
≤ 3nαkL·(fµ(xk)−fµ(y

(i)
k)) .

Proof. Now there are three possibilities:

• If η
(i)
k = 0, then we must have ξ

(i)
k,i = ∇ifµ(xk) ∈ [−1, 1], and Lemma 6.15

immediately implies

〈
nαkη

(i)
k , zk−1 − u

〉
+ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
= n2α2

kL ·
〈
∇fµ(xk), xk − y

(i)
k

〉
≤ 2n2α2

kL · (fµ(xk)− fµ(y
(i)
k))

• If η
(i)
k > 0 and z

(i)
k,i > 0, then we precisely have z

(i)
k,i = zk−1,i − nαk

‖A�i‖∞ (see

Proposition 6.13), and accordingly y
(i)
k,i = xk,i − 1

L‖A�i‖∞ < xk,i. In this case,

〈
nαkη

(i)
k , zk−1 − u

〉
+ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
¬

≤ nαk · ∇fµ(xk) ·
1

‖A�i‖∞
+ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
­
< nαk · ∇fµ(xk) ·

1

‖A�i‖∞
+ n2α2

kL ·
〈
∇fµ(xk), xk − y

(i)
k

〉
®
= nαkL ·

〈
∇fµ(xk), xk − y

(i)
k

〉
+ n2α2

kL ·
〈
∇fµ(xk), xk − y

(i)
k

〉
¯

≤
(
2nαkL+ 2n2α2

kL
)
· (fµ(xk)− fµ(y

(i)
k)) .

Above, ¬ follows from the fact that zk−1 ∈ ∆ and therefore zk−1,i ≤ 1
‖A�i‖∞ by

the definition of ∆, and u ≥ 0; ­ follows from the fact that xk and y
(i)
k are only

169

different at coordinate i, and ξ
(i)
k,i = 1 < ∇ifµ(xk) (since η

(i)
k,i > 0); ® follows

from the fact that y
(i)
k = xk − ei

L‖A�i‖∞ ; and ¯ uses Lemma 6.15.

• If η
(i)
k > 0 and z

(i)
k,i = 0, then we have〈

nαkη
(i)
k , zk−1 − u

〉
+ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
¬

≤
(
nαk∇fµ(xk) · zk−1,i

)
+ n2α2

kL ·
〈
∇fµ(xk), xk − y

(i)
k

〉
­
=
〈
nαk∇fµ(xk), zk−1 − z

(i)
k

〉
+ n2α2

kL ·
〈
∇fµ(xk), xk − y

(i)
k

〉
®
= n2α2

kL ·
〈
∇fµ(xk), xk − y

(i)
k

〉
+ n2α2

kL ·
〈
∇fµ(xk), xk − y

(i)
k

〉
¯

≤ 4n2α2
kL · (fµ(xk)− fµ(y

(i)
k)) .

Above, ¬ is because u ≥ 0, ∇ifµ(xk) = η
(i)
k,i + 1 > η

(i)
k,i and ∇ifµ(xk) > ξ

(i)
k,i; ­

uses the assumption that z
(i)
k,i = 0 and the fact that zk−1,` = z

(i)
k,` for every ` 6= i;

® is from our choice of yk which satisfies that zk−1− z
(i)
k = nαkL(xk − y

(i)
k); and

¯ uses Lemma 6.15.

Combining the three cases above, and using the fact that fµ(xk) − fµ(y
(i)
k) ≥ 0, we

conclude that〈
nαkη

(i)
k , zk−1 − u

〉
+ n2α2

kL ·
〈
ξ

(i)
k , xk − y

(i)
k

〉
≤ (2nαkL+ 4n2α2

kL) · (fµ(xk)− fµ(y
(i)
k))

≤ 3nαkL · (fµ(xk)− fµ(y
(i)
k)) .

Above, the last inequality uses our choice of αk (see Algorithm 4). �

Corollary 6.17. With probability at least 9/10, PacLPSolver(A, xstart, ε) outputs a

(1 − O(ε)) approximate solution to the packing LP program. The expected running

time is O(log(nm/ε) log(1/ε)
ε

N).

Proof. Since for every x ∈ ∆ it satisfies fµ(x) ≥ −(1+ε)OPT according to Proposition 6.3.b,

we obtain that fµ(yT) + (1 + ε)OPT is a random variable that is non-negative, whose

expectation E[fµ(yT) + (1 + ε)OPT] ≤ 4ε. By Markov bound, with at least probabil-

ity 9/10, we obtain some yT satisfying fµ(yT) ≤ −(1−O(ε))OPT, which yields some

(1−O(ε)) approximate solution according to Proposition 6.3.c.

The running time follows from our efficient implementation in Section 6.F. �

6.C Missing Proofs for Section 6.5
Proposition 6.19.

(a) OPT ∈ [1,m].

(b) fµ(u∗) ≤ (1 + ε)OPT for u∗
def
= (1 + ε/2)x∗ ∈ ∆.

170

(c) fµ(x) ≥ (1− ε)OPT for every x ≥ 0.

(d) Letting xstart = (1 + ε/2) · x] + (1
n
, . . . , 1

n
), we have 1Txstart ≤ 2OPT′ and

fµ(xstart) ≤ 4OPT.

(e) For any x ≥ 0 satisfying fµ(x) ≤ 2OPT, we must have Ax ≥ (1− ε)1.

(f) If x ≥ 0 satisfies fµ(x) ≤ (1+O(ε))OPT, then 1
1−εx is a (1+O(ε))-approximate

solution to the covering LP.

(g) The gradient of fµ(x) can be written as

∇fµ(x) = 1− ATp(x) where pj(x)
def
= exp

1
µ

(1−(Ax)j)

Proof.

(a) Suppose that j∗ is the row that achieves the smallest infinite norm ‖Aj�‖∞ over

all rows. Then, for any solution x ∈ Rn
≥0 satisfying 〈A�j∗ , x〉 ≥ 1, we must have

1Tx ≥ 1/‖A�j∗‖∞ = 1.

On the other hand, we can construct a feasible solution x as follows. Initialize

x = 0, and then for each row j, let us find the coordinate i that maximizes the

value of Aij among all columns i. Then, we increase xi by 1/Aij = 1/‖Aj�‖∞.

After we have exhausted all the m rows, we arrive at some x ≥ 0 satisfying

Ax ≥ 1 as well as 1Tx =
∑

j 1/‖Aj�‖∞ ≤ m.

(b) We have 1Tu∗ = (1 + ε/2)OPT by the definition of OPT. Also, from the

feasibility constraint Ax∗ ≥ 1 in the covering LP, we have Au∗ − 1 ≥ ε/2 · 1,

and can compute fµ(u∗) as follows:

fµ(u∗) = µ
∑
j

exp
1
µ

(1−(Au∗)j) +1Tu∗ ≤ µ
∑
j

exp
−ε/2
µ +(1 + ε/2)OPT

≤ µm

(nm)2
+ (1 + ε/2)OPT ≤ (1 + ε)OPT .

(c) Suppose towards contradiction that fµ(x) < (1− ε)OPT. Since fµ(x) < OPT ≤
m, we must have that for every j ∈ [m], it satisfies that exp

1
µ

(1−(Ax)j) ≤
fµ(x)/µ ≤ m/µ. This further implies (Ax)j ≥ 1 − ε by the definition of µ.

In other words, Ax ≥ (1 − ε)1. By the definition of OPT, we must then have

1Tx ≥ (1− ε)OPT, finishing the proof that fµ(x) ≥ 1Tx ≥ (1− ε)OPT, giving

a contradiction.

(d) Using the fact that Axstart−1 ≥ (1+ε/2)Ax]−1 ≥ ε/2·1, we compute fµ(xstart)

as follows:

fµ(xstart) = µ
∑
j

exp
1
µ

(1−(Axstart)j) +1Txstart ≤ µ
∑
j

exp
−ε/2
µ +2OPT + 1

171

≤ µm

(nm)2
+ 3OPT < 4OPT .

Also, we have 1Txstart ≤ (1 + ε/2)OPT′ + 1 ≤ 2OPT′.

(e) To show Ax ≥ (1− ε)1, we can assume that v = maxj(1− (Ax)j) > ε because

otherwise we are done. Under this definition, we have

fµ(x) ≥ µ exp
v
µ = µ

(
(
nm

ε
)4
)v/ε
≥ ε

4 log(nm)
(
nm

ε
)4 � 2OPT ,

contradicting to our assumption that fµ(x) ≤ 2OPT. Therefore, we must have

v ≤ ε, that is, Ax ≥ (1− ε)1.

(f) For any x satisfying fµ(x) ≤ (1+O(ε))OPT ≤ 2OPT, owing to Proposition 6.19.e,

we first have that x is approximately feasible, i.e., Ax ≥ (1 − ε)1. Next, be-

cause 1Tx ≤ fµ(x) ≤ (1 + O(ε))OPT, we know that x yields an objective

1Tx ≤ (1 +O(ε))OPT. Letting x′ = 1
1−εx, we both have that x′ is feasible (i.e.,

Ax′ ≥ 1), and x′ has an objective 1Tx′ at most (1 +O(ε))OPT.

(g) Straightforward by some simple computation. �

6.D Missing Proofs for Section 6.6
Lemma 6.24.

fµ(xk)− fµ(u∗) ≤ 〈1− ATp(xk), xk − u∗〉+ 〈ÃTp(xk)− ATp(xk), u
∗〉+ εOPT

= 〈∇fµ(xk), xk − u∗〉+ 〈ÃTp(xk)− ATp(xk), u
∗〉+ εOPT

Proof.

fµ(xk)− fµ(u∗) = µ
m∑
j=1

(
exp

1
µ

(1−(Axk)j)− exp
1
µ

(1−(Au∗)j)
)

+ 〈1, xk − u∗〉

¬

≤ µ
m∑
j=1

(
exp

1
µ

(1−(Axk)j)− exp
1
µ

(1−(Ãu∗)j)
)

+ 〈1, xk − u∗〉+ µ ·m · exp−1/µ

­

≤
m∑
j=1

exp
1
µ

(1−(Axk)j) ·
(
(Ãu∗)j − (Axk)j

)
+ 〈1, xk − u∗〉+ εOPT

=
m∑
j=1

pj(xk) ·
(
(Ãu∗)j − (Axk)j

)
+ 〈1, xk − u∗〉+ εOPT

=
m∑
j=1

pj(xk) ·
(
(Au∗)j − (Axk)j

)
+ 〈1, xk − u∗〉

172

+
m∑
j=1

pj(xk) ·
(
(Ãu∗)j − (Au∗)j

)
+ εOPT

= 〈−Ap(xk), xk − u∗〉+ 〈1, xk − u∗〉+ 〈ÃTp(xk)− ATp(xk), u
∗〉+ εOPT .

Above, ¬ is because if (Au∗)j 6= (Ãu∗)j for some j, then it must satisfy that (Ãu∗)j =

2, and therefore − exp
1
µ

(1−(Au∗)j) ≤ − exp
1
µ

(1−(Ãu∗)j) + exp−1/µ. ­ uses the convexity

inequality of eb − ea ≤ 〈eb, b− a〉, and the fact that µm exp−1/µ � εOPT. �

Lemma 6.26.

fµ(xk)− fµ(u∗) ≤ (1− τ)

τ
(fµ(yk−1)− fµ(xk)) + Ei

[
〈nξ(i)

k , zk−1 − u∗〉
]

+ Ei
[
〈nη̃(i)

k ,−u
∗〉
]

+ εOPT .

Proof.(
fµ(xk)− fµ(u∗)

)
− εOPT

¬

≤ 〈∇fµ(xk), xk − u∗〉+ 〈ÃTp(xk)− ATp(xk), u
∗〉

= 〈∇fµ(xk), xk − zk−1〉+ 〈∇fµ(xk), zk−1 − u∗〉+ 〈ÃTp(xk)− ATp(xk), u
∗〉

­
=

(1− τ)

τ
〈∇fµ(xk), yk−1 − xk〉+ 〈∇fµ(xk), zk−1 − u∗〉+ 〈ÃTp(xk)− ATp(xk), u

∗〉
®

≤ (1− τ)

τ
(fµ(yk−1)− fµ(xk)) + 〈∇fµ(xk), zk−1 − u∗〉+ 〈ÃTp(xk)− ATp(xk), u

∗〉

=
(1− τ)

τ
(fµ(yk−1)− fµ(xk)) + 〈ξk + ηk, zk−1 − u∗〉+ 〈ÃTp(xk)− ATp(xk), u

∗〉
¯

≤ (1− τ)

τ
(fµ(yk−1)− fµ(xk)) + 〈ξk, zk−1 − u∗〉+ 〈ÃTp(xk)− ATp(xk)− ηk, u∗〉

°

≤ (1− τ)

τ
(fµ(yk−1)− fµ(xk)) + 〈ξk, zk−1 − u∗〉+ 〈−η̃k, u∗〉

=
(1− τ)

τ
(fµ(yk−1)− fµ(xk)) + Ei

[
〈nξ(i)

k , zk−1 − u∗〉+ 〈−nη̃(i)
k , u

∗〉
]
.

Above, ¬ is due to Lemma 6.24. ­ is because xk = τzk−1 +(1−τ)yk−1, which implies

that τ(xk − zk−1) = (1 − τ)(yk−1 − xk). ® is by the convexity of fµ(·). ¯ is because

〈ηk, zk−1〉 ≤ 0, since ηk ≤ 0 while zk−1 ≥ 0.

° needs some careful justification: for every i 6∈ Bk, we have (ÃTp(xk)−ATp(xk))i−
ηk,i ≤ 0− 0 = −η̃k,i; for every i ∈ Bk, we have

(ÃTp(xk)− ATp(xk))i − ηk,i = (ÃTp(xk)− ATp(xk))i −
(
(1 + β)− (ATp(xk))i

)
= −

(
(1 + β)− (ÃTp(xk))i

)
= −η̃k,i ,

where the two equalities follow from the definitions of ηk,i and η̃k,i (see Definition 6.25).

173

�

Lemma 6.27. Denoting by γ
def
= 2αTn, we have

Ei
[
αk
〈
nξ

(i)
k , zk−1 − u∗

〉]
≤ Vzk−1

(u∗

1 + γ

)
− Ei

[
V
z
(i)
k

(u∗

1 + γ

)]
+ 12OPT · γαkβ .

Proof. Define w(x)
def
=
∑

i xi log(xi)− xi and accordingly, Vx(y) = w(y)− 〈w′(x), y −
x〉 − w(x) =

∑
i yi log yi

xi
+ xi − yi. We first compute using the classical analysis of

mirror descent step as follows:

γαk
〈
nξ

(i)
k , zk−1

〉
+ αk

〈
nξ

(i)
k , zk−1 − u∗

〉
= (1 + γ)αk

〈
nξ

(i)
k , z

(i)
k −

u∗

1 + γ

〉
+ (1 + γ)αk

〈
nξ

(i)
k , zk−1 − z

(i)
k

〉
¬

≤
〈
w′(zk−1)− w′(z(i)

k), z
(i)
k −

u∗

1 + γ

〉
+ (1 + γ)αk

〈
nξ

(i)
k , zk−1 − z

(i)
k

〉
=
(
w
(u∗

1 + γ

)
− w(zk−1)−

〈
w′(zk−1),

u∗

1 + γ
− zk−1

〉)
−
(
w
(u∗

1 + γ

)
− w(z

(i)
k)−

〈
w′(z

(i)
k),

u∗

1 + γ
− z

(i)
k

〉)
+
(
w(zk−1)− w(z

(i)
k)−

〈
w′(zk−1), zk−1 − z

(i)
k

〉)
+ (1 + γ)αk

〈
nξ

(i)
k , zk−1 − z

(i)
k

〉
= Vzk−1

(u∗

1 + γ

)
− V

z
(i)
k

(u∗

1 + γ

)
+ (1 + γ)αk

〈
nξ

(i)
k , zk−1 − z

(i)
k

〉
− Vzk−1

(z
(i)
k) . (6.10)

Above, ¬ is because z
(i)
k = arg minz∈∆

{
Vzk−1

(z)+ 〈(1+γ)αknξ
(i)
k , z〉

}
, which is equiv-

alent to saying

∀u ∈ ∆, 〈V ′zk−1
(z

(i)
k) + (1 + γ)αknξ

(i)
k , u− z

(i)
k 〉 ≥ 0

⇐⇒ ∀u ∈ ∆, 〈w′(z(i)
k)− w′(zk−1) + (1 + γ)αknξ

(i)
k , u− z

(i)
k 〉 ≥ 0 .

In particular, we have 1T u∗

1+γ
= 1T

(1+ε/2)x∗

1+γ
< 2OPT ≤ 2OPT′ and therefore substi-

tuting u = u∗

1+γ
∈ ∆ into the above inequality we get ¬.

Next, we upper bound the term in the box:

(1 + γ)αk〈nξ(i)
k , zk−1 − z

(i)
k 〉 − Vzk−1

(z
(i)
k)

¬

≤ (1 + γ)αknξk,i · (zk−1,i − z
(i)
k,i)−

(
z

(i)
k,i log

z
(i)
k,i

zk−1,i

+ zk−1,i − z
(i)
k,i

)
­

≤ (1 + γ)αknξk,i · (zk−1,i − z
(i)
k,i)−

|z(i)
k,i − zk−1,i|2

2 max{z(i)
k,i, zk−1,i}

174

®

≤ (1 + γ)αknξk,i · (zk−1,i − z
(i)
k,i)−

|z(i)
k,i − zk−1,i|2

4zk−1,i

¯

≤ (1 + γ)2zk−1,i · (αknξk,i)2
°

≤ 2zk−1,i · (αknξk,i)2
±

≤ zk−1,i · γαkn|ξk,i|
²

≤ zk−1,i · γαknξk,i + 2zk−1,i · γαknβ = γαk〈nξ(i)
k , zk−1〉+ 2zk−1,i · γαknβ . (6.11)

Above, ¬ uses the fact that for every i′ 6= i, z
(i)
k,i′ log

z
(i)

k,i′

zk−1,i′
+ zk−1,i′ − z

(i)
k,i ≥ 0. ­ uses

the inequality that for every a, b > 0, we have a log a
b

+ b−a ≥ (a−b)2
2 max{a,b} .

12 ® uses the

fact that z
(i)
k,i ≤ 2zk−1,i.

13 ¯ uses Cauchy-Shwarz: ab− b2/4 ≤ a2. ° uses (1+γ)2 < 2.

± uses |ξk,i| ≤ 1 and γ = 2αTn ≥ 2αkn. ² uses ξk,i ≥ −β.

Next, we combine (6.10) and (6.11) to conclude that

αk
〈
nξ

(i)
k , zk−1 − u∗

〉
≤ Vzk−1

(u∗

1 + γ

)
− V

z
(i)
k

(u∗

1 + γ

)
+ 2zk−1,i · γαknβ .

Taking expectation on both sides with respect to i, and using the property that

1T zk−1 ≤ 3OPT′ ≤ 6OPT, we obtain that

Ei
[
αk
〈
nξ

(i)
k , zk−1 − u∗

〉]
≤ Vzk−1

(u∗

1 + γ

)
− Ei

[
V
z
(i)
k

(u∗

1 + γ

)]
+ 12OPT · γαkβ . �

Proposition 6.28. If zk−1 ∈ ∆ and zk−1 > 0, the minimizer z = arg minz∈∆

{
Vzk−1

(z)+

〈δei, z〉
}

for any scalar δ ∈ R and basis vector ei can be computed as follows:

1. z ← zk−1.

2. zi ← zi · e−δ.
3. If 1T z > 2OPT′, z ← 2OPT′

1T z
z.

4. Return z.

Proof. Let us denote by z the returned value of the described procedure, and g(u)
def
=

Vzk−1
(u) + 〈δei, u〉. Since ∆ is a convex body and g(·) is convex, to show z =

arg minz∈∆{g(u)}, it suffices for us to prove that for every u ∈ ∆, 〈∇g(z), u− z〉 ≥ 0.

Since the gradient ∇g(z) can be written explicitly, this is equivalent to

δ(ui − zi) +
n∑
`=1

log
z`

zk−1,`

· (u` − z`) ≥ 0 .

If the re-scaling in step 3 is not executed, then we have z` = zk−1,` for every ` 6= i,

12This inequality in fact corresponds to a local strong convexity property of w(·). We have used
this technique in our paper [7] (see Chapter 5).

13This is because, our parameter choices ensure that (1 + γ)αkn < 1/2β, which further means

−(1 + γ)αknξ
(i)
k ≤ 1/2. As a result, we must have z

(i)
k,i ≤ zk−1,i · e0.5 < 2zk−1,i (see the explicit

definition of the mirror step at Proposition 6.28).

175

and zi = zk−1,i · e−δ; thus, the left-hand side is zero so the above inequality is true for

every u ∈ ∆.

Otherwise, we have 1T z = 2OPT′ and there exists some constant factor Z > 1

such that, z` = zk−1,`/Z for every ` 6= i, and zi = zk−1,i · e−δ/Z. In such a case, the

left-hand side equals to

(ui − zi) · (δ − δ) +
n∑
`=1

− logZ · (u` − z`) .

It is clear at this moment that since logZ > 0 and 1Tu ≤ 2OPT′ = 1T z, the above

quantity is always non-negative, finishing the proof. �

Lemma 6.29. For every i ∈ [n], we have

(a) fµ(xk)− fµ(y
(i)
k) ≥ 0, and

(b) fµ(xk)− fµ(y
(i)
k) ≥ µβ

12
· 〈−η̃(i)

k , u
∗〉 .

Proof of Lemma 6.29 part (a). Since if i 6∈ Bk is not a large index we have y
(i)
k = xk

and the claim is trivial, we focus on i ∈ Bk in the remaining proof. Recall that

y
(i)
k = xk + δei for some δ > 0 defined in Algorithm 5, so we have

fµ(xk)− fµ(y
(i)
k) =

∫ δ

τ=0

〈−∇fµ(xk + τei), ei〉dτ =

∫ δ

τ=0

(
〈A�i, p(xk + τei)〉 − 1

)
dτ .

It is clear that 〈A�i, p(xk + τei)〉 decreases as τ increases, and therefore it suffices to

prove that 〈A�i, p(xk + δei)〉 ≥ 1.

Suppose that the rows of A�i are sorted (for the simplicity of notation) by the

increasing order of Aj,i. Now, by the definition of the algorithm, there exists some

j∗ ∈ [m] satisfying that∑
j<j∗

Aj,i · pj(xk) < 1 + β and
∑
j≤j∗

Aj,i · pj(xk) ≥ 1 + β .

Next, by our choice of δ which satisfies δ = µβ
2Aj∗,i

≤ µβ
2Aj,i

for every j ≤ j∗, we have

pj(xk + δei) = pj(xk) · exp−
Aj,iδ

µ ≥ pj(xk) · exp−β/2 ≥ pj(xk) · (1− β/2) ,

and as a result,

〈A�i, p(xk+δei) ≥
∑
j≤j∗

Aj,i·pj(xk+δei) ≥ (1−β/2)
∑
j≤j∗

Aj,i·pj(xk) ≥ (1−β/2)(1+β) ≥ 1 .

�

176

Proof of Lemma 6.29 part (b). Owing to part (a), for every coordinate i such that

η̃k,i ≥ 0, we automatically have fµ(xk)− fµ(y
(i)
k) ≥ 0 so the lemma is obvious. There-

fore, let us focus only on coordinates i such that η̃k,i < 0; these are necessarily large

indices i ∈ B. Recall from Definition 6.25 that η̃k,i = (1+β)− (ÃTp(xk))i, so we have

m∑
j=1

Ãj,i · pj(xk)− (1 + β) > 0 .

For the simplicity of description, suppose again that the rows of the i-th column

is sorted in the non-decreasing order of Aj,i. That is, A1,i ≤ · · ·Am,i. The definition

of j∗ can be simplified as∑
j<j∗

Aj,i · pj(xk) < 1 + β and
∑
j≤j∗

Aj,i · pj(xk) ≥ 1 + β .

Let j[∈ [m] be the row such that∑
j<j[

Ãj,i · pj(xk) < 1 + β and
∑
j≤j[

Ãj,i · pj(xk) ≥ 1 + β .

Note that such a j[must exist because
∑m

j=1 Ãj,i · pj > 1 + β. It is clear that j[≥ j∗,

owing to the definition that Ãji ≤ Aji for all i ∈ [n], j ∈ [m]. Defining δ[= µβ
2A

j[,i

≤ δ,

the objective decrease is lower bounded as

fµ(xk)− fµ(y
(i)
k) =

∫ δ

τ=0

〈−∇fµ(xk + τei), ei〉dτ =

∫ δ

τ=0

(
〈A�i, p(xk + τei)〉 − 1

)
dτ

≥
∫ δ[

τ=0

(
〈A�i, p(xk + τei)〉 − 1

)
dτ

=

∫ δ[

τ=0

(∑
j≤j[

Aj,i · pj(xk + τei)− 1
)
dτ

︸ ︷︷ ︸
I

+
∑
j>j[

∫ δ[

τ=0

Aj,i · pj(xk + τei)dτ︸ ︷︷ ︸
I′

where the inequality is because δ[≤ δ and 〈A�i, p(xk + τei)〉 ≥ 1 for all τ ≤ δ (see

the proof of part (a)).

Part I. To lower bound I, we use the monotonicity of pj(·) and obtain that

I =

∫ δ[

τ=0

(∑
j≤j[

Aj,i · pj(xk + τei)− 1
)
dτ ≥ δ[·

(∑
j≤j[

Aj,i · pj(xk + δ[ei)− 1
)
.

177

However, our choice of δ[= µβ
2A

j[,i

≤ µβ
2Aj,i

for all j ≤ j[ensures that

∑
j≤j[

Aj,i · pj(xk + δ[ei) ≥
∑
j≤j[

Aj,i · pj(xk) · exp
−Aj,i·δ

[

µ ≥
∑
j≤j[

Aj,i · pj(xk) · (1− β/2) .

Therefore, we obtain that

I ≥ δ[
(

(1− β/2)
∑
j≤j[

Aj,i · pj(xk)− 1
)
≥ δ[

3

(∑
j≤j[

Aj,i · pj(xk)− 1
)
,

where the inequality is because
(

2
3
− β

2

)∑
j≤j[Aj,i ·pj(xk) ≥

4−3β
6
·(1+β) ≥ 2

3
whenever

β ≤ 1
3

(or equivalently, whenever ε ≤ 1/9).

Now, suppose that
∑

j≤j[Ãj,i ·pj(xk)− (1+β) = b · Ãj[,i ·pj[(xk) for some b ∈ [0, 1].

Note that we can do so by the very definition of j[. Then, we must have∑
j≤j[

Aj,i · pj(xk)− 1 ≥
∑
j<j[

Ãj,i · pj(xk) + Aj[,i · pj[(xk)− 1

= (1 + β)− (1− b)Ãj[,i · pj[(xk) + Aj[,i · pj[− 1

≥ β + b · Aj[,i · pj[(xk) .

Therefore, we conclude that

I ≥ δ[

3

(∑
j≤j[

Aj,i · pj(xk)− 1
)
>
δ[

3
· b · Aj[,i · pj[(xk) =

µβ

6Ãj[,i
· b · Ãj[,i · pj[(xk)

=
µβ

6Ãj[,i
·
(∑
j≤j[

Ãj,i · pj(xk)− (1 + β)
)
≥ µβ

12
· u∗i ·

(∑
j≤j[

Ãj,i · pj(xk)− (1 + β)
)
.

Above, the last inequality is because u∗i · Ãj[,i ≤ 〈Ãj[�, u∗〉 ≤ 2 by our definition of

the adjusted Ã.

Part I ′. To lower bound I ′, consider every j > j[and the integral∫ δ[

τ=0

Aj,i · pj(xk + τei)dτ .

Note that whenever τ ≤ µβ
2Aj,i
≤ µβ

2A
j[,i

= δ[, we have that pj(xk+τei) ≥ pj(xk)·e−β/2 ≥
1
2
pj(xk). Therefore, the above integral is at least µβ

2Aj,i
· Aj,i · 1

2
pj(xk). This implies a

lower bound on I ′:

I ′ ≥
∑
j>j[

µβ

4Aj,i
· Aj,i · pj(xk) ≥

µβ

8
·
∑
j>j[

u∗i · Ãj,i · pj(xk) ,

178

where again in the last inequality we have used u∗i · Ãj[,i ≤ 〈Ãj[�, u∗〉 ≤ 2 by our

definition of Ã.

Together. Combining the lower bounds on I and I ′, we obtain

fµ(xk)−fµ(y
(i)
k) ≥ I+I ′ ≥ µβ

12
·u∗i ·

(m∑
j=1

Ãj,i ·pj(xk)−(1+β)
)

=
µβ

12
·〈−η̃(i)

k , u
∗〉 . �

6.E Efficient Implementation of PacLPSolver

In this section, we illustrate how to implement each iteration of PacLPSolver to run

in an expected O(N/n) time. We maintain the following quantities

zk ∈ Rn
≥0, azk ∈ Rm

≥0, y′k ∈ Rn, ayk ∈ Rm, Bk,1, Bk,2 ∈ R+

throughout the algorithm, so as to ensure the following invariants are always satisfied

Azk = azk , (6.12)

yk = Bk,1 · zk +Bk,2 · y′k , Ayk = Bk,1 · Azk +Bk,2 · ayk . (6.13)

It is clear that when k = 0, letting azk = Az0, y′k = y0, ayk = Ay0, Bk,1 = 0, and

Bk,2 = 1, we can ensure that all the invariants are satisfied initially. We denote ‖A�i‖0

the number of nonzeros elements in vector A�i. In each iteration k = 1, 2, . . . , T :

• The step xk = τzk−1 + (1− τ)yk−1 does not need to be implemented.

• The value ∇if(xk) requires the knowledge of pj(xk) = exp
1
µ

((Axk)j−1) for each j

such that Aij 6= 0. Accordingly, we need to know the value

(Axk)j = τ(Azk−1)j+(1−τ)(Ayk−1)j =
(
τ+(1−τ)Bk−1,1

)
(Azk−1)j+(1−τ)Bk−1,2ayk−1,j

for each such j. This can be computed in O(1) time for each j, and O(‖A�i‖0)

time in total.

• Recall that the step zk ← arg minz∈∆

{
1
2
‖z − zk−1‖2

A + 〈nαkξ(i)
k , z〉

}
can be

written as zk = zk−1 + δei for some δ ∈ R that can be computed in O(1)

time (see Proposition 6.13). Observe also that zk = zk−1 + δei yields yk =

τzk−1 +(1−τ)yk−1 + δei
nαkL

due to Line 6 and Line 10 of Algorithm 4. Therefore,

we can perform two explicit updates on zk and azk as

zk ← zk−1 + δei , azk ← Azk−1 + δA�i

179

and two implicit updates on yk as

Bk,1 = τ + (1− τ)Bk−1,1 , Bk,2 = (1− τ)Bk−1,2 ,

y′k ← y′k−1 + δei ·
(
− Bk,1

Bk,2
+ 1

nαkL
1

Bk,2

)
, ayk ← ayk−1 + δA�i ·

(
− Bk,1

Bk,2
+ 1

nαkL
1

Bk,2

)
It is not hard to verify that after these updates, we have

yk = Bk,1 · zk +Bk,2 · y′k

= Bk,1 ·
(
zk−1 + δei

)
+Bk,2 ·

(
y′k−1 + δei ·

(
− Bk,1

Bk,2

+
1

nαkL

1

Bk,2

))
= Bk,1 · zk−1 +Bk,2 ·

(
y′k−1 + δei ·

(1

nαkL

1

Bk,2

))
= Bk,1 · zk−1 +Bk,2 · y′k−1 +

δei
nαkL

=
(
τ + (1− τ)Bk−1,1

)
· zk−1 +

(
(1− τ)Bk−1,2

)
· y′k−1 +

δei
nαkL

= τzk−1 + (1− τ)yk−1 +
δei
nαkL

.

One can similarly verify that Ayk = Bk,1 ·Azk+Bk,2 ·ayk equals Ayk = τAzk−1 +

(1−τ)Ayk−1+ δAei
nαkL

. In sum, these updates are dominated by the updates on Azk
and ayk, each costing an O(‖A�i‖0) running time, and ensure that the invariants

in (6.12) and (6.13) are satisfied at iteration k.

In sum, we only need O(‖A�i‖0) time to perform the updates in PacLPSolver for

an iteration k if the coordinate i is selected. Therefore, each iteration of PacLPSolver

can be implemented to run in an expected O(Ei[‖A�i‖0]) = O(N/n) time.

6.F Efficient Implementation of CovLPSolver
In this section we illustrate how to implement each iteration of CovLPSolver to run

in an expected O(N/n) time. We maintain the following quantities

z′k ∈ Rn
+, szk ∈ R+, sumzk ∈ R+, azk ∈ Rm

≥0, y′k ∈ Rn, ayk ∈ Rm, Bk,1, Bk,2 ∈ R+

throughout the algorithm, so as to maintain the following invariants are always sat-

isfies

zk = z′k/szk, sumzk = 1T z′k, Azk = azk/szk, (6.14)

yk = Bk,1 · z′k +Bk,2 · y′k, Ayk = Bk,1 · azk +Bk,2 · ayk . (6.15)

It is clear that when k = 0, letting z′k = z0, szk = 1, sumzk = 1T z0, azk = Az0, y′k = y0,

ayk = Ay0, Bk,1 = 0, and Bk,2 = 1, we can ensure that all the invariants are satisfied

180

initially.

We denote by ‖A�i‖0 the number of nonzero elements in vector A�i. In each

iteration k = 1, 2, . . . , T :

• The step xk = τzk−1 + (1− τ)yk−1 does not need to be implemented.

• The value pj(xk) = exp
1
µ

(1−(Axk)j) for each j only requires the knowledge of

(Axk)j = τ(Azk−1)j+(1−τ)(Ayk−1)j =
(
τ+(1−τ)Bk−1,1

)azk−1,j

szk−1

+(1−τ)Bk−1,2ayk−1,j .

This can be computed in O(1) time.

• The value ∇if(xk) requires the knowledge of pj(xk) for each j ∈ [m] such that

Aij 6= 0. Since we have ‖A�i‖0 such j’s, we can compute ∇if(xk) in O(‖A�i‖0)

time.

• Letting δ = (1+γ)nαkξ
(i)
k,i, recall that the mirror step zk ← arg minz∈∆

{
Vzk−1

(z)+

〈δei, z〉
}

has a very simple form (see Proposition 6.28): first multiply the i-th

coordinate of zk−1 by e−δ and then, if the sum of all coordinates have exceeded

2OPT′, scale everything down so as to sum up to 2OPT′. This can be imple-

mented as follows: setting δ1 = z′k−1,i(e
−δ − 1),

z′k ← z′k−1 + δ1ei , azk ← azk−1 + δ1A�i ,

sumzk ← sumzk−1 + δ1 , szk ← szk ·max
{

1, sumzk
szk−1·2OPT′

}
.

These updates can be implemented to run in O(‖A�i‖0) time, and they together

ensure that the invariants in (6.14) are satisfied at iteration k.

• Recall that the gradient step is of the form yk ← xk + δ2 · ei for some value

δ2 ≥ 0. This value δ2 can be computed in O(‖A�i‖0) time, since each pj(xk) can

be computed in O(1) time, and we can sort the rows of each column of A by

preprocessing.

Since yk = xk+δ2 ·ei = τzk−1 +(1−τ)yk−1 +δ2ei, we can implement this update

by letting

Bk,1 = τ
szk−1

+ (1− τ)Bk−1,1 , Bk,2 = (1− τ)Bk−1,2

y′k ← y′k−1 + ei ·
(
− Bk,1δ1

Bk,2
+ δ2

Bk,2

)
, ayk ← ayk−1 + A�i ·

(
− Bk,1δ1

Bk,2
+ δ2

Bk,2

)
It is not hard to verify that after these updates, we have

yk = Bk,1 · z′k +Bk,2 · y′k = Bk,1 ·
(
z′k−1 + δ1ei

)
+Bk,2 ·

(
y′k−1 + ei ·

(
− Bk,1δ1

Bk,2

+
δ2

Bk,2

))
= Bk,1 · z′k−1 +Bk,2 ·

(
y′k−1 + δ2ei/Bk,2

)
181

= Bk,1 · z′k−1 +Bk,2 · y′k−1 + δ2ei

=
(τ

szk−1

+ (1− τ)Bk−1,1

)
· z′k−1 +

(
(1− τ)Bk−1,2

)
· y′k−1 + δ2ei

= τzk−1 + (1− τ)yk−1 + δ2ei .

One can similarly verify that Ayk = Bk,1 ·azk +Bk,2 ·ayk equals Ayk = τAzk−1 +

(1− τ)Ayk−1 + δ2A�i. These updates can be implemented to run in O(‖A�i‖0)

time, and they together ensure that the invariants in (6.15) are satisfied at

iteration k.

In sum, we only need O(‖A�i‖0) time to perform the updates in CovLPSolver for

an iteration k if the coordinate i is selected. Therefore, each iteration of CovLPSolver

can be implemented to run in an expected O(Ei[‖A�i‖0]) = O(N/n) time.

182

Algorithm 5 CovLPSolver(A, xstart, ε)

Input: A ∈ Rm×n
≥0 , xstart ∈ ∆, ε ∈ (0, 1/10].

Output: x ∈ ∆.
1: µ← ε

4 log(nm/ε)
, β ←

√
ε, τ ← µβ

12n
. . parameters

2: T ← d 1
τ

log(1/ε)e = O(log(nm/ε) log(1/ε)
ε1.5

n). . number of iterations
3: α0 ← (1− τ)T ε

12nβ
and γ ← ε

6β
. . so that αT = ε

12nβ
and γ = 2αTn

4: x0 = y0 = z0 ← xstart.
5: for k ← 1 to T do
6: αk ← 1

1−ταk−1.
7: xk ← τzk−1 + (1− τ)yk−1.
8: Randomly select i uniformly at random from [n].

9: Define ξ
(i)
k to be a vector that is only non-zero at coordinate i, and equals to

Tc(∇ifµ(xk)).

. recall from (6.8) that ∇ifµ(xk) = 1−
∑m

j=1Aj,i exp
1
µ

(1−(Axk)j)

. recall from Definition 6.20 that Tc(v)
def
=

{
v, v ∈ [−β, 1];
−β, v < −β.

10: zk ← z
(i)
k

def
= arg minz∈∆

{
Vzk−1

(z) + 〈(1 + γ)nαkξ
(i)
k , z〉

}
. . See

Proposition 6.28
11: if ∇ifµ(xk) < −β then
12: Denote by π the permutation that sorts the entries of A�i into Aπ(1),i ≤
· · · ≤ Aπ(m),i .

13: Pick j∗ ∈ [m] such that
∑

j<j∗ Aπ(j),i · pπ(j)(xk) < 1 + β but
∑

j≤j∗ Aπ(j),i ·
pπ(j)(xk) ≥ 1 + β.

. Such a j∗ ∈ [m] must exist because
∑m

j=1Aji · pj(xk) ≥ 1 + β.

14: yk ← y
(i)
k

def
= xk + δ · ei where δ = µβ

2Aπ(j∗),i
.

15: else
16: yk ← y

(i)
k

def
= xk.

17: end if
18: end for
19: return yT .

183

THIS PAGE INTENTIONALLY LEFT BLANK

184

Chapter 7

Using Optimization to Obtain a

Width-Independent, Parallel,

Simpler, and Faster Positive SDP

Solver

This chapter is based on an unpublished result of the author, and its further

edits can be found at:

http: // arxiv. org/ abs/ 1507. 02259 .

We study the design of polylogarithmic depth algorithms for approximately solving

packing and covering semidefinite programs (or positive SDPs for short). This is a

natural SDP generalization of the well-studied positive LP problem.

Although positive LPs can be solved in polylogarithmic depth while using only

log2 n/ε3 parallelizable iterations [7], the best known positive SDP solvers due to Jain

and Yao [84] require log14 n/ε13 parallelizable iterations. Several alternative solvers

have been proposed to reduce the exponents in the number of iterations [85, 129].

However, the correctness of the convergence analyses in these works has been called

into question [129], as they both rely on algebraic monotonicity properties that do

not generalize to matrix algebra.

In this paper, we propose a very simple algorithm based on the optimization

framework proposed in [7] (see Chapter 5) for LP solvers. Our algorithm only needs

log2 n/ε3 iterations, matching that of the best LP solver. To surmount the obstacles

encountered by previous approaches, our analysis requires a new matrix inequality

that extends Lieb-Thirring’s inequality, and a sign-consistent, randomized variant of

the gradient truncation technique proposed in [7, 6].

185

http://arxiv.org/abs/1507.02259

7.1 Introduction
Solvers for linear programs (LPs) and semidefinite programs (SDPs) are important al-

gorithmic tools for many computational tasks, spanning the fields of computer science,

operations research, statistics, and applied mathematics. Although polynomial-time

generic solvers for LPs and SDPs have been known for a long time, their performance

is often unsatisfactory in the big-data scenario.

In the past two decades, a significant amount of attention has been paid towards

a special class of LPs and SDPs, known as positive LPs [101] and positive SDPs [89]

respectively. At a high level, positive LPs are characterized by non-negative variables

and a non-negative constraint matrix; similarly, positive SDPs are described by posi-

tive semidefinite (PSD) matrix variables and a family of PSD matrices as constraints.

In this paper, we are interested in solving positive SDPs, formally defined as follows.

Positive SDP. Given m × m PSD matrices A1, A2, . . . , An, positive SDP (after

putting in its standard form) refers to the following pair of SDPs:1

Packing SDP: maxx≥0

{
1Tx :

∑n
i=1 xiAi � I

}
, (7.1)

Covering SDP: minY�0

{
Tr(Y) : Ai • Y ≥ 1 ∀i ∈ [n]

}
. (7.2)

Since the two programs are dual to each other, let us denote by OPT the optimal

value to both of them. Also, let x∗ be any optimal solution for the packing SDP (7.1).

We say that x ≥ 0 is a (1 − ε)-approximation to the packing SDP if
∑n

i=1 xiAi � I

and 1Tx ≥ (1 − ε)OPT, and Y � 0 a (1 + ε)-approximation to the covering SDP if

Ai • Y ≥ 1 for all i ∈ [n] and Tr(Y) ≤ (1 + ε)OPT.

In this paper, we assume without loss of generality that

mini∈[n]{‖Ai‖spe} = 1 where ‖Ai‖spe is the spectral norm of Ai ,

since otherwise one can scale all Ai by a constant factor, and the solution OPT as well

as x∗ are only affected by this same constant factor. We denote by A = (A1, . . . , An).

History. Positive SDP instances have been used to model a large numer of computa-

tional problems, such as Max-Cut [89, 78], sparse PCA [78], coloring [78], the ARV

relaxation of SparsestCut [77] and BalancedSeparator [11, 126], and many

others. Positive SDPs also found application in computational complexity, where

they were crucial in establish the QIP = PSPACE equivalence [81], as well as in quan-

tum interactive proofs [82] and quantum zero-sum games [83]. In addition, techniques

developed in this line of research have also inspired many other important results,

most notably regarding spectral graph theory [125, 126, 4].

1The most general form of covering SDP can be written as follows. Given m×m PSD matrices
C,A1, . . . , An, and non-negative scalars b1, . . . , bn, a general covering SDP is to

minimize C • Y subject to the constraint that Ai • Y ≥ bi for each i ∈ [m] and Y � 0.

It is a simple exercise, but anyways proved in [129, Appendix A], to see that the above general form
can be easily translated into our standard form. This is also true for packing SDP.

186

While there has been a lot of research on the fast approximate solution of positive

LPs [101, 131, 24, 165, 113, 32, 25, 118, 47, 17, 115, 10, 92, 166, 7, 6], the more

general positive SDP case has lagged somewhat behind. Most known positive SDP

solvers [9, 11, 83, 82, 81, 77, 78] demand a parallel running time that is polylog(nm/ε)·
poly(ρ) in order to produce a (1 ± ε) approximation of the optimal value. In this

expression, ρ is a “width” parameter that depends on the numeric value of the SDP

and that can sometimes be as large as poly(n,m).

In a seminal work in 1993, Luby and Nisan [101] introduced the first width-

independent and polylogarithmic-parallel-time positive LP solver. Based on this

breakthrough, in 2011, Jain and Yao [84] proposed the first approximate positive-SDP

solver that is width-independent and whose parallel running time is only poly(log n, 1
ε
).

In fact, their algorithm is a faithful generalization of the positive LP solver of Luby

and Nisan [101] to positive SDPs. Although the convergence rate (i.e., number of par-

allelizable iterations) required by Luby and Nisan’s algorithm is only O(log2(nm)/ε4),

the convergence rate of Jain and Yao’s is as large as O(log14(nm)/ε13) (see Table 7.1).

This significant loss in the running time stems from the harder task of computing with

matrices and in particular by the loss of commutativity in matrix algebra with respect

to the vector setting.

The poor theoretical performance of [84] has attracted some researchers to study

alternative positive-SDP solvers. Motivated by Young’s algorithm [165] for positive

LPs, two alternative solvers have been proposed [85, 129]. However, the theoretical

convergence of these two new solvers remains unclear, as the correctness of both

convergence analyses has been called into question. The issue with the algorithm

of [129] is explicitly stated in the latest ArXiv version of that paper [130]. A similar

issue has been identified [127, 164] with the proof of [85]. In a nutshell, the proof

difficulties in both works arise because Young’s algorithm, in its current form, relies

on a monotonicity argument. While such monotonicity holds naturally in the vector

(i.e., LP) case, it does not generalize to the matrix (i.e. SDP) world. See Section 7.2

for a detailed discussion of this.

As a result, the best parallel running time of width-independent positive SDP

solvers remains to be O(log14(nm)/ε13) due to Jain and Yao [84].

This Paper. In this paper, we present an algorithm PosSDPSolver(A, ε) that runs

only in O(logn·log(nm/ε)
ε3

) iterations. This matches the best convergence rate of the

width-independent parallel positive LP solver [7], and is a significant improvement

over the best known width-independent positive SDP solver by Jain and Yao [84]. It

is also an improvement over the solvers of [129] and [85], even if their analyses can

be fixed. (See Table 7.1.)

Our algorithm is also much simpler than all the previous width-independent pos-

itive SDP solvers, as it avoids the use of “phases” and restarts that are required by

previous solvers [84, 85, 129]. Our algorithm is simply divided into O(logn·log(nm/ε)
ε3

)

187

Problem Paper
Parallel Depth Per

Iteration
Number of Iterations

p/c LP [101] log(nm) log2(nm)/ε4

p/c LP [7] log(nm) log2(nm)/ε3

p/c SDP [84] polylog(nm) · poly(1/ε) log14(nm)/ε13

p/c SDP [129, 85] log2(nm)/ε log2(nm)/ε4, in doubt a

p/c SDP [this paper] log2(nm)/ε log2(nm)/ε3

Table 7.1: Comparisons of asymptotic running times among width-independent ap-
proximate solvers for positive LPs and SDPs. Notice that each iteration of a SDP
solver requires a 1/ε-dependance to approximate the matrix exponential using the
Johnson-Lindestrauss Lemma [129].

aSee Section 7.2 for details.

iterations. Starting from some initial vector x ≥ 0, in each iteration, we compute n

matrix exponential computations A1 • eΨ, . . . An • eΨ in parallel for some symmetric

matrix Ψ satisfying ‖Ψ‖spe ≤ O(log(nm)/ε), and then change xi according to the

value of Ai • eΨ. This same algorithm simultaneously produces 1±O(ε) approximate

solutions to the packing SDP (7.1) and the covering SDP (7.2),.

We remark here that, as originally put forward by Arora and Kale [11], and then

formally established by Peng and Tangwongsan [129], each of our iterations can be

implemented to run in O(log2(nm)/ε) parallel time after some simple preprocessing.

In fact, such computations are required by all the previous width-independent positive

SDP solvers.

Our Techniques. Our algorithm is directly based on the optimization framework

of the positive LP solver recently put forward by Allen-Zhu and Orecchia [7] (see

Chapter 5). The non-commutativity introduced by matrices creates significant ob-

stascles and technical challenges that have forced us to make both our algorithm and

analysis different from [7].

To begin with, just like the result in [7], we interpret the positive SDP problem as a

purely optimization question, i.e., to minimize f(x) for some convex function f = f sdp

that is an SDP extension over its LP choice f lp proposed in [7]. In each iteration of

our algorithm, we compute the coordinate gradient ∇if(x)
def
= Ai • e

1
µ

(
∑
i∈[n] xiAi−I)− 1

for each i ∈ [n].

An Old Story. In [7], the authors update each xi as follows. They first define the

truncated gradient by letting ξi be essentially min{1,∇if(x)}.2 Next, update each

xi ← xi · e−αξi for some global parameter α = Θ(ε2/ log(nm)) > 0.

2There is an optimization insight behind why such a truncation is needed and we refer the
interested readers to the introduction of [7].

188

The key idea behind the convergence result of [7] is that, if one changes x accord-

ing to the rule above, then for each “important” i ∈ [n] (i.e., coordinates i satisfying

∇if(x) 6∈ [−ε, ε]), we have that ∇if(x) is guaranteed to change multiplicatively

within a factor of 1± 1
2

as x changes, and therefore the sign of ∇if(x) for each impor-

tant i remains the same before and after each update. This leads to the conclusion

that the objective value f(x) effectively decreases during each iteration.

Unfortunately, this “multiplicative-change” guarantee, which is a crucial compo-

nent of most width-independent solvers, is false in the SDP setting.

Our New Ideas. In this paper, we make two important observations. First, suppose

for a moment that x is updated in a sign-consistent manner: either it non-decreases or

it non-increases for all the coordinates. Even under this sign-consistent assumption,

∇if(x) does not necessarily remain of the same sign for each important coordinate i,

so the previous analysis of [7] still fails in the SDP setting. However, under this sign-

consistencty assumption, we can show that a carefully chosen weighted summation

of ∇if(x) does maitain the same sign. This consideration is sufficient to prove that

the objective signficantly decreases at every iteration. To show that the weighted

summation remains of the same sign, we require a generalization of the Lieb-Thirring

inequality. To the best of our knowledge, this is a new matrix inequality, which may

be of independent interest. We shall discuss the relation between our generalizaiton

of Lieb-Thirring and positive SDPs in Section 7.2.

Finally, to ensure that x is updated in a sign-consistent manner, we introduce

randomness as follows. We flip an unbiased coin at each of our iterations, and choose

to either update xi’s in a non-decreasing manner (therefore ignoring all coordinates i

with ∇if(x) > 0), or in a non-increasing manner (therefore ignoring all coordinates i

with ∇if(x) < 0). Such a random choice can be shown to decrease the objective f(x)

well in expectation, but adds a lot difficulty to the analysis of the covering SDP. In

short, after such randomness is introduced, the old analysis of [7] only gives a solution

Y whose expectation E[Y] is feasible to the covering SDP (7.2): that is, Ai •E[Y] ≤ 1

for each i ∈ [n]. Such a result is totally useless because we need Ai • Y ≤ 1 for each

i ∈ [n], and therefore we need to propose a totally different analysis that bypasses

this difficulty (see Section 7.6).

Conclusion. In this paper we show that the positive LP solver by Allen-Zhu and

Orecchia [7] (see Chapter 5) can be extended to the SDP setting without any asymp-

totic loss in the convergence rate.

At a high level, to convert any positive LP solver to SDP, one needs to tradeoff

between (a) “what is allowed to be changed in the algorithm without hurting its

performance” and (b) “what must be changed in order to work with matrix algebra”.

In this paper, we make use of the optimization framework of [7], which gives us the

greatest degree of freedom in (a), and prove a new matrix inequality that gives us

a better understanding of (b). Together, these techincal advances lead to a width-

189

independent, parallel, simpler, and faster solver for positive SDPs.

7.1.1 Roadmap

We introduce our new matrix inequality and discuss about its connection to positive

SDP in Section 7.2. Next in Section 7.3 we describe our algorithm PosSDPSolver.

In Section 7.4, we define an objective fµ(x) and relates it to positive SDP. In Section 7.5

and Section 7.6 respectively, we describe the convergece analyses for the packing and

the covering SDPs.

7.2 Some False and Some True Inequalities in Ma-

trix Algebra

We denote by A • B = Tr(AB) = Tr(BA) the matrix inner product, and by ‖A‖spe
the spectral norm of a matrix A. If X is symmetric, we use eX to denote its matrix

exponential. We write A � 0 if A is positive semidefinite (PSD), and A � B if

A−B � 0.

Some False Matrix Inequalities. The following is the SDP version of a funda-

mental inequality that the positive LP solver of [7] relies on: for every symmetric

matrix Ψ and every i ∈ [n],

Ai • eΨ+B = (1±O(ε)) · Ai • eΨ if −εI � B � εI . (7.3)

Unfortunately, this inequality is false in the general SDP case. It is straightforward

to check that it holds when all matrices involved are diagonal.

Similarly, here is another SDP inequality, whose LP version is crucial to to many

positive LP solvers [165, 24, 25, 17, 166]. It is the following monotonocity statement:

for every symmetric matrix Ψ and every i ∈ [n],

Ai • eΨ+B ≥ Ai • eΨ if B � 0 .

However, this inequality is again false.

Unfortunately, these false matrix facts have found their ways in the positive SDP

solvers proposed in [129, 85]. It is not clear at this point if these analyses can be

fixed [127, 164].3 Both the inequalities above become true if Ψ and B commute. This

is precisely why the aforementioned positive LP solvers are correct.

Our New Approach. In this section, we shall prove that

B • eΨ+B = (1±O(ε)) ·B • eΨ as long as εI � B � 0 or −εI � B � 0. (7.4)

This non-trivial matrix inequality holds even if B and Ψ are not commutable, and

shall become important for our later proofs in Section 7.5.1. We shall prove this by

3The ArXiv version [130] of the paper of Peng and Tangwongsan [129] acknowledges the error.
The error in the analysis of [85] lies in the proof of Lemma 8, where they use the fact that “localj(x)
only increases”. This is an instantiation of the second false inequality above.

190

first establishing an interesting extended form of the Lieb-Thirring inequality.

In 1976, Lieb and Thirring [97] proved that for every A,B � 0 and every r ≥ 1,

it holds that Tr(B1/2A1/2B1/2)r ≤ Tr(Br/2Ar/2Br/2). This inequality is known as the

Lieb-Thirring inequality and is famous for its applications in quantum mechanics and

differential equations. Very recently, Allen-Zhu, Liao, and Orecchia have connected

it to the online matrix optimization problems [4] (see also Chapter 8).

In the special case of r = 2, the Lieb-Thirring inequality says that Tr(B1/2A1/2B1/2)2 ≤
Tr(BAB). In this paper, we establish the following generalization of the Lieb-Thirring

inequality, which turns out to be crucial for the convergence analysis of our positive

SDP solver. To the best of our knowledge, this inequality has not appeared in the

literature.

Lemma 7.1 (Extended Lieb-Thirring Inequality). Given A � 0, B � 0 and α ∈
[0, 1], we have

B1/2AαB1/2 •B1/2A1−αB1/2 ≤ Tr(BAB) .

Unlike the original proof of Lieb-Thirring inequality which relies on Epstein’s

concavity theorem, our proof of Lemma 7.1 relies on Lieb’s concavity theorem:

Proposition 7.2 (Lieb’s concavity theorem). For all m × n matrices K, and all

q, r such that 0 ≤ q ≤ 1 and 0 ≤ r ≤ 1, with q + r ≤ 1, the function F (A,B)
def
=

Tr(KTAqKBr) is jointly concave over (A,B), where A (resp. B) is over the set of

all m×m (resp. n× n) positive definite matrices.

Proof of Lemma 7.1. The inequality is obvious when α = 0 or α = 1, and therefore

we shall assume without loss of generality that α ∈ (0, 1). In addition, we can assume

without loss of generality that B is diagonal: otherwise, one can apply an orthogonal

transformation to make B diagonal.

Let us write A = AD + A0, where AD is the diagonal part of A, and A0 is the

off-diagonal part of A. Define Aλ
def
= AD + λA0 = λA + (1 − λ)AD. It is clear from

this definition that Aλ � 0 for all λ ∈ [0, 1]. In fact, we notice that A � 0 implies AD

is positive in all of its diagonal entries. As a consequence, there exists some constant

ε > 0 such that Aλ � 0 even for all λ ∈ [−ε, 1].

Now, consider two matrix-to-real functions g(A)
def
= B1/2AαB1/2 • B1/2A1−αB1/2

and h(A)
def
= Tr(BAB). Since g(A) = Tr(BAαBA1−α), Lieb’s concavity theorem

(cf. Proposition 7.2) implies that g(A) is concave in A (over the positive definite

cone). In contrast, h(A) is simply a function that is linear in A. Therefore, R(λ)
def
=

g(Aλ) − h(Aλ) is defined and concave over λ ∈ [−ε, 1], and Lemma 7.1 is equivalent

to saying that R(1) ≤ 0.

We begin analyzing R(λ) by noticing that R(0) = g(A0) − h(A0) = 0: this is

a simple consequence of the fact that B, being a diagonal matrix, commutes with

A0 = AD. Therefore, combined with the concavity of R(λ), to prove R(1) ≤ 0 it

191

suffices to prove that R(λ) is differentiable at λ = 0 and R′(0) = 0.

First of all, M1(λ)
def
= (Aλ)

α is differentiable at λ = 0 and its derivative at λ = 0

has zero diagonal entries. Indeed, using the representation M1(λ) = 1
π csc(απ)

·
∫∞

0
xα−1 ·

Aλ(Aλ + xI)−1dx, one can verify that,

dM1(λ)

dλ

∣∣∣
λ=0

=
1

π csc(απ)
·
∫ ∞

0

xα−1 ·
(dAλ
dλ

(Aλ + xI)−1 − Aλ(Aλ + xI)−1dAλ
dλ

(Aλ + xI)−1
)∣∣∣

λ=0
dx

=
1

π csc(απ)
·
∫ ∞

0

xα−1 ·
(
A0(AD + xI)−1 − AD(AD + xI)−1A0(AD + xI)−1

)
dx .

Noticing in the above equality A0 is a matrix with zero diagonal entries, while (AD +

xI)−1 and AD(AD + xI)−1 are both diagonal matrices. Therefore, M ′
1(0) is a matrix

with zero diagonal entries.

Similarly, defining M2(λ)
def
= (Aλ)

1−α we have that M2(λ) is differentiable at λ = 0

and M ′
2(0) is a matrix with zero diagonal entries.

Finally, we can compute that

R′(0) =
d
(
B1/2(Aλ)

αB1/2 •B1/2(Aλ)
1−αB1/2

)
dλ

∣∣∣
λ=0
− d(B2 • Aλ)

dλ

∣∣∣
λ=0

= B1/2M ′
1(0)B1/2 •B1/2(AD)1−αB1/2 +B1/2(AD)αB1/2 •B1/2M ′

2(0)B1/2 −B2 • A0 .

Clearly, this means R′(0) = 0 because M ′
1(0), M ′

2(0) and A0 are all matrices with zero

diagonal entries, and B and AD are diagonal matrices. �

Our extended Lieb-Thirring inequality immediately yields the following mono-

tonicity property on matrix exponential, which is a formal statement of (7.4). Its

proof is deferred to Appendix 7.A.

Lemma 7.3. Given PSD matrix A satisfying εI � A � 0 and symmetric matrix Ψ,

define function f(t)
def
= A • eΨ+tA over real values t. Then, 0 ≤ f ′(t) ≤ εA • eΨ+tA =

εf(t) for all t. As a result:

(a) f(t) ≤ f(0) · eεt for all t ≥ 0, and

(b) f(t) ≥ f(0) · eεt for all t ≤ 0.

7.3 Our Algorithm

Our algorithm PosSDPSolver(A, ε) runs only in T = O(logn·log(nm/ε)
ε3

) parallelizable

iterations. We iteratively update x so as to maximize 1Tx, while keeping the approx-

imate feasibility
∑

i xiAi � (1 + ε)I. At each iteration k, we compute a feedback

vector v so that vi = e
1
µ

(
∑
i∈[n] xiAi−I) •Ai− 1 ∈ [−1,∞), and perform a multiplicative

update xi ← xi · e−α·T(vi). Here, T(·) is randomly chosen (for each iteration k) as

either T− or T+, defined as follows:

192

Algorithm 6 PosSDPSolver(A, ε)

Input: A = (A1, . . . , An) where each Ai ∈ Rm×m is PSD, and ε ∈ (0, 1/10].
Output: nonnegative vector x ∈ Rn

≥0 and PSD matrix Y ∈ Rm×m.
1: µ← ε

4 log(nm/ε)
and α← εµ

4
. . parameters

2: x
(0)
i ←

1−ε/2
n‖Ai‖spe for all i ∈ [n]. . initial vector x(0)

3: T ← 8 log(2n)
αε

. . number of iterations
4: for k ← 0 to T − 1 do
5: Randomly choose T(k) to be either T− or T+, each with probability half.
6: for i← 1 to n do
7: Compute the feedback vi ← e

1
µ

(
∑
i∈[n] xiAi−I) • Ai − 1

8: Perform an update: x
(k+1)
i ← x

(k)
i · e−α·T

(k)(vi).
9: end for

10: end for
11: return x(T)

1+ε
and Ȳ

1−2ε
, where Ȳ

def
=
∑T−1

i=0 Y (x(k)).

. recall that Y (x)
def
= e

1
µ

(
∑
i∈[n] xiAi−I)

Definition 7.4. The thresholding functions T−,T+ : [−1,∞) → [−1, 1] are defined

as follows

T−(v)
def
=

{
0, v ∈ [−ε,∞);

v, v ∈ [−1,−ε).
T+(v)

def
=


0, v ∈ [−1, ε];

v, v ∈ (ε, 1];

1, v > 1.

Note that if T = T− then the variables of x monotonically non-decreases, and vice

versa.

Remark 7.5 (Matrix Exponentials). Matrix exponential computations are required

by all width-independent positive SDP solvers, and dominate the complexity of each

algorithmic iteration. Like in previous solvers, it is a simple exercise to verify that

our entire analysis in this paper continues to hold, though with a worsen constant,

if we are only computing the values vi = e
1
µ

(
∑
i∈[n] xiAi−I) • Ai up to a 1 ± ε/2 mul-

tiplicative factor. Therefore, for simplicity’s sake, in this paper we assume that the

matrix exponentials can be computed exactly. Note that the 1 ± ε/2 approximate

computations of e
1
µ

(
∑
i∈[n] xiAi−I)•Ai for all i ∈ [n] can be performed in polylog parallel

iterations.4

We summarize our theorem as follows.

4More precisely, when each Ai = QiQ
T
i is presented in its Cholesky decomposition, we have

Theorem 7.6 ([129]). Given an m × m PSD matrix Φ with p non-zero entries and ‖Φ‖spe ≤ κ,
and given m×m matrices {A1, . . . , An} in the form of Ai = QiQ

T
i where the total non-zero entries

across all Qi is q. Then, there exists an algorithm that computes eΦ •Ai for all i ∈ [n] up to a (1±ε)
factor in

O
(

max
{
κ, log

1

ε

}
logm+ log logm

)
depth and O

(1

ε2

(
max

{
κ, log

1

ε

}
· p+ q

)
logm

)
work

193

Theorem 7.7 (Positive SDP). Letting (x, Y) = PosSDPSolver(A, ε), we have that

with at least a constant probability

• x is a (1−O(ε))-approximate solution for the packing SDP (7.1),

• Y is a (1 +O(ε))-approximate solution for the covering SDP (7.2), and

• the number of iterations for PosSDPSolver is T = O(log n · log(nm/ε) · ε−3).

If each Ai = QiQ
T
i is preprocessed into its Cholesky decomposition, each iteration

can be implemented in O(log2(nm)/ε) parallel depth.

7.4 The Convex Objective

We define the following convex objective for the positive SDP problem. It is com-

pletely analogous to its LP variant introduced in [7], and therefore we state its prop-

erties without proof.

Definition 7.8. Letting parameter µ
def
= ε

4 log(nm/ε)
, we define the smoothed objective

fµ(x) as

fµ(x)
def
= µ · Tr

(
e

1
µ

(
∑
i∈[n] xiAi−I)

)
− 1Tx .

We want to study the minimization problem on fµ(x) over all x ≥ 0. This objective

fµ(x) captures the packing SDP because, on one hand we want to minimize −1Tx so

as to maximize 1Tx, and on the other hand the exponential penalty function says if∑
i∈[n] xiAi � (1 + ε)I is violated, a large positive penalty is introduced.

Proposition 7.9.

(a) OPT ∈ [1, n].

(b) Letting x = (1− ε/2)x∗ ≥ 0, we have fµ(x) ≤ −(1− ε)OPT.

(c) Letting x(0) ≥ 0 be such that x
(0)
i = 1−ε/2

n‖Ai‖spe for each i ∈ [n], we have fµ(x(0)) ≤
−1−ε

n
.

(d) For any x ≥ 0 satisfying fµ(x) ≤ 0, we have
∑

i∈[n] xiAi � (1 + ε)I and thus

1Tx ≤ (1 + ε)OPT.

(e) If x ≥ 0 satisfies fµ(x) ≤ −(1 − O(ε))OPT, then 1
1+ε

x is a (1 − O(ε))-

approximate solution for the packing SDP.

(f) The gradient of fµ(x) can be written as

∇fµ(x) = (A1•Y (x), . . . , An•Y (x))−1 where Y (x)
def
= e

1
µ

(
∑
i∈[n] xiAi−I) (7.5)

Since one can verify that ‖Φ‖spe ≤ κ
def
= 1/µ = O(log(nm/ε)/ε) in our case, each iteration of

PosSDPSolver can be implemented to run in O(log2(nm)/ε) parallel time. (Here, we can safely
assume that ε > 1/(nm)O(1); if ε is smaller than 1/(nm)O(1), one should use for instance Interior
Point Method to solve the given SDP instead.)

194

7.5 Convergence Analysis for Packing SDP

Throughout this paper, we use superscript x(k) to represent vector x at iteration k,

and subscript xi to represent the i-th coordinate of vector x. Our convergence analysis

is divided into three steps, and the first step is the main technical difference between

this paper and its LP variant [7].

Step I: Gradient Descent. We interpret (see Section 7.5.1 for details) each update

x
(k+1)
i ← x

(k)
i ·e−α·T

(k)(vi) as a gradient descent step,5 and show that the objective fµ(x)

monotonically decreases between consecutive iterations:

Lemma 7.10 (Gradient Descent). For every iteration k = 0, . . . , T−1 in PosSDPSolver,

the objective fµ(x) does not increases: fµ(x(k)) − fµ(x(k+1)) ≥ 0. Combining this

with Proposition 7.9.c, we have fµ(x(k)) ≤ 0 for all k.

In addition, letting B(k) ⊆ [n] be the set of indices i such that ∇ifµ(x(k)) ≥ 1,

then

fµ(x(k))− E[fµ(x(k+1))] ≥ α

4
·
∑

i∈B(k) x
(k)
i · ∇ifµ

(
x(k)
)
≥ 0 .

Above, the expectation is over the random choice of T(k) at iteration k.

We remark here that Lemma 7.10 does not follow from any classical theory of gradient

descent because our objective fµ(x) is simply not smooth in the positive orthant.

Neither does Lemma 7.10 follow from the so-called “multiplicative Lipschitz gradient

property” introduced in [7], because the fundamental property that the work [7]

replies on, “∇ifµ(x) increases as x decreases, and vice versa”, no longer holds in the

SDP case. This is also one of the major reasons that the results of [129, 85] fail to

produce any theoretical guarantee.

Our proof of Lemma 7.10 crucially relies on two key properties. First, the sign-

consistent and random choice of T(k) ensures that x either only increases or only

decreases at a single iteration k. Second, our new matrix inequality introduced in

Section 7.2 ensures that “∇ifµ(x) increases in an average sense as x decreases”. We

defer the technical proof of Lemma 7.10 to Section 7.5.1.

Step II: Mirror Descent. It is not hard to show, and in fact proven in [7] for

a slightly different variant, that each update x
(k+1)
i ← x

(k)
i · e−α·T

(k)(vi) can also be

viewed as a mirror-descent step.

A mirror descent step in optimization is any step from x to x′ that is of the form

x′ ← arg minz{Vx(z) + 〈α∇f(x), z − x〉}. Here, α > 0 is some step length, and

Vx(x̃) = w(x̃) − 〈∇w(x), x̃ − x〉 − w(x) is the Bregman divergence of some convex

distance generating function w(x). In this paper, we pick w(x)
def
=
∑

i∈[n] xi log xi− xi

5To be clear, in some literature, the gradient descent is referred only to x ← x − c · ∇f(x) for
some constant c. In this paper, we adopt the more general notion, and refer it to any step that
directly decreases f(x).

195

to be the generalized entropy function, and accordingly,

for every x, x̃ ≥ 0, Vx(x̃)
def
=
∑

i∈[n]

(
x̃i log x̃i

xi
+ xi − x̃i

)
.

The next lemma easily follows from the general theory of mirror descent. Since

its proof has essentially appeared in [7, Lemma 3.3], we prove it in Section 7.B.3 only

for the sake of completeness.

Lemma 7.11 (Mirror Descent). Letting γ ∈ [−1, 1]n be defined as γi = T(∇ifµ(x(k))),

we have that for any u ≥ 0,

〈αγ, x(k) − u〉 ≤ α2OPT + Vx(k)(u)− Vx(k+1)(u) .

Step III: Coupling. Finally, as formally argued in Section 7.B.2, the two lemmas

above can be naturally combined, yielding the following bound:

Lemma 7.12 (Coupling). For any u ≥ 0 and k = 0, . . . , T − 1, we have

α(fµ(x(k))− fµ(u)) ≤ 〈α∇fµ(x(k)), x(k) − u〉
≤ 4(fµ(x(k))− E[fµ(x(k+1))]) + 2

(
Vx(k)(u)− E[Vx(k+1)(u)]

)
+ α · 2εOPT + α · ε1Tu .

Above, the expectation is over the random choice of T(k) at iteration k.

The proof of Lemma 7.12 relies on a decomposition of the gradient ∇ifµ(x(k)) into

four components ∇ifµ(x(k)) = ξ+
i + ξ−i + ηi + ζi, where ξ+

i ∈ [0, 1], ξ−i ∈ [−1, 0],

ηi ∈ [0,∞), and ζi ∈ [−ε, ε]. This is a main difference that distinguishes our proof

from [7]: we need to decompose the ξi part into a positive and a negative terms, and

then apply Lemma 7.11 twice.

Putting All Together. By telescoping the inequality in Lemma 7.12, one can

obtain the following final theorem for packing SDP. Its proof is only slightly different

from that of [7, Theorem 3.5] due to the special treatment of the randomness, and

deferred to Section 7.B.4.

Theorem 7.13 (Packing SDP). For T ≥ 8 log(2n)
αε

= Ω(logn·log(nm/ε)
ε3

), we have that

E[fµ(x(T))] ≤ −(1 − 5ε)OPT. As a consequence, PosSDPSolver(A, ε) produces an

output x = x(T)

1+ε
that is a (1−O(ε))-approximate solution for the packing SDP (7.1)

with at least a constant probability.

7.5.1 The Gradient Descent Lemma

In this subsection we view our update x(k) → x(k+1) as a gradient-descent step and

prove Lemma 7.10. We begin by observing that each xi is changed by a factor of at

most 1± 4α/3 per iteration:

Fact 7.14. We always have x
(k+1)
i ∈ x(k)

i · [1− 4α/3, 1 + 4α/3].

Proof. We can always write x
(k+1)
i = x

(k)
i · et for some t ∈ [−α, α] ⊆ [−1/4, 1/4].

According to the fact that et ≤ 1 + 4t/3 for t ∈ [0, 1/4] and et ≥ 1− t ≥ 1− 4t/3 for

196

t ∈ [−1/4, 0], we must have x
(k+1)
i ∈ x(k)

i · [1− 4α/3, 1 + 4α/3]. �

Proof of Lemma 7.10. We prove by induction. Suppose that Lemma 7.10 is true for

all indices less than k. This implies, in particular, that fµ(x(k)) ≤ fµ(x(k−1)) ≤ · · · ≤
fµ(x(0)) ≤ 0.

There are two cases to consider at iteration k: (1) if we choose T−(·) and (2) if

we choose T+(·). Each of them happens with probability 1/2.

In the first case, that is, if we choose T−(·), we have the property that our vector

does not decrease: that is, x
(k+1)
i ≥ x

(k)
i for every i ∈ [n]. We compute the objective

difference by the standard integral over gradients:

fµ(x(k))− fµ(x(k+1)) =

∫ 1

0

〈
∇fµ

(
x(k) + τ(x(k+1) − x(k))

)
, x(k) − x(k+1)

〉
dτ

= 1Tx(k+1) − 1Tx(k) +

∫ 1

0

(
e

1
µ

(
∑
i∈[n] x

(k)
i Ai−I+τ

∑
i∈[n](x

(k+1)
i −x(k)i)Ai) •

∑
i

(x
(k)
i − x

(k+1)
i)Ai

)
dτ

= 1Tx(k+1) − 1Tx(k) − µ
∫ 1

0

B • eΨ+τBdτ , (7.6)

where in the last equality we have defined Ψ
def
= 1

µ
(
∑

i∈[n] x
(k)
i Ai − I) and B

def
=

1
µ

∑
i∈[n](x

(k+1)
i − x(k)

i)Ai � 0.

Notice that fµ(x(k)) ≤ 0 together with Proposition 7.9.d tells us that
∑

i∈[n] x
(k)
i Ai �

(1+ε)I. Combining it with Fact 7.14 we have
∑

i∈[n]

(
x

(k+1)
i −x(k)

i

)
Ai � 4α

3
(1+ε)I �

5α
3
I and therefore B � 5α

3µ
I = 5ε

12
I. Applying Lemma 7.3.a with B � 5ε

12
I to (7.6), we

have

fµ(x(k))− fµ(x(k+1)) ≥ 1Tx(k+1) − 1Tx(k) − µ
∫ 1

0

B • eΨ · e5ετ/12dτ

≥ 1Tx(k+1) − 1Tx(k) − (1 + ε/4)µB • eΨ .

Recall that, for each i ∈ [n] satisfying x
(k+1)
i 6= x

(k)
i , we must have eΨ•Ai−1 < −ε

by the definition of T−(·). Therefore, multiplying both sides by x
(k+1)
i − x(k)

i ≥ 0 and

summing up over i ∈ [n], we obtain

µB • eΨ = eΨ • (
∑
i∈[n]

(x
(k+1)
i − x(k)

i)Ai) ≤ (1− ε)(1Tx(k+1) − 1Tx(k)) .

This further implies that (after some careful term rearranging)

1Tx(k+1) − 1Tx(k) − (1 + ε/4)µB • eΨ ≥ 3
4
(1Tx(k+1) − 1Tx(k) − µB • eΨ)

= 3
4
〈∇fµ(x(k)), x(k) − x(k+1)〉 ≥ 0 .

Above, the last inequality is again by our definition of T−: for each i ∈ [n] satisfying

x
(k)
i 6= x

(k+1)
i , it must satisfy that ∇ifµ(x(k)) < −ε and x

(k)
i ≤ x

(k+1)
i . In conclusion,

we arrive at the inequality

fµ(x(k))− fµ(x(k+1)) ≥ 3

4
〈∇fµ(x(k)), x(k) − x(k+1)〉 ≥ 0 .

197

In the case when T+ is chosen, a symmetric argument (although replacing the

use of Lemma 7.3.a with Lemma 7.3.b and using slightly different constants, see

Appendix 7.B.1) yields that

fµ(x(k))− fµ(x(k+1)) ≥ 2

3
〈∇fµ(x(k)), x(k) − x(k+1)〉

≥ 2

3

∑
i∈B(k) ∇ifµ(x(k)) · (x(k)

i − x
(k+1)
i) .

Above, the second inequality is because for each i ∈ [n] satisfying x
(k)
i 6= x

(k+1)
i ,

it must satisfy that ∇ifµ(x(k)) > ε and x
(k)
i ≥ x

(k+1)
i . Next, observe that for each

coordinate i ∈ B(k) we have x
(k+1)
i = x

(k)
i · e−α ≤ (1 − 0.9α)x

(k)
i for our choice of α.

Plugging this into the inequality above, we arrive at the inequality

fµ(x(k))− fµ(x(k+1)) ≥ 2

3
· 0.9α

∑
i∈B(k)

∇ifµ(x(k)) · x(k)
i ≥

α

2

∑
i∈B(k)

∇ifµ(x(k)) · x(k)
i ≥ 0 .

Finally, combining the two cases above, we conclude that

fµ(x(k))− E[fµ(x(k+1))] ≥ α

4

∑
i∈B(k) ∇ifµ(x(k)) · x(k)

i . �

7.6 Convergence Analysis for Covering SDP

We have seen in Section 7.5 that a vector x ≥ 0 satisfying fµ(x) ≈ −OPT yields an

approximate solution to the packing SDP (7.1). However, this vector x itself gives no

information about the solution to the covering SDP (7.2).

In this section, we show that, defining Ȳ
def
=
∑T−1

i=0 Y (x(k)) where Y (x)
def
= e

1
µ

(
∑
i∈[n] xiAi−I),

then Ȳ
1−2ε

is a (1+O(ε))-approximate solution to the covering SDP (7.2) with at least

a constant probability. Therefore, PosSDPSolver(A, ε) is an algorithm that simulta-

neously solves both the primal and the dual side of the positive SDP problem.

Our proof can be divided into two parts. First, using similar proof techniques

as in [7], one can show that Ȳ satisfies the approximate optimality, at least in an

expected sense. We prove this lemma below in Appendix 7.C only for the sake of

completeness.

Lemma 7.15. For any T ≥ 8
αε

= Ω(log(nm/ε)
ε3

), we have that E[Tr(Ȳ)] ≤ (1+7ε)OPT.

In the second part, we wish to show that Ȳ satisfies the approximate feasibility as

well, that is, Ai • Ȳ ≤ 1 +O(ε) for all i ∈ [n]. However, we encounter two difficulties:

• First, a similar analysis as in [7] would only imply that the expected matrix E[Ȳ]

satisfies such approximate feasibility, rather than Ȳ . By Markov’s inequality,

this only suggests that for each (rather than for all) i ∈ [n], Ai • Ȳ ≤ 1 + O(ε)

holds with constant probability.6

6Previously, the first and third authors of this paper have tried to bypass this difficulty using a
dual smoothed objective in the LP case [6] (see Chapter 6). However, their analysis is more involved
and loses a factor of ε0.5 in the running time.

198

• Second, the analysis in [7] does not directly imply that Ȳ is approximately

feasible. Instead, one has to modify Ȳ in a non-trivial manner which is very

unpleasant in practice.

Due to the above difficulties, we propose in this paper a fundamentally different, yet

much simpler analysis for proving the approximate feasibility. This is deferred to

Appendix 7.C.

Lemma 7.16. For any T ≥ 8
αε

, with probability at least 1− ε
100

we have Ai•Ȳ ≥ 1−2ε

for all i ∈ [n].

It is now easy to see that Lemma 7.15 and Lemma 7.16 together imply that

Corollary 7.17 (Covering SDP). With at least a constant probability, we have

∀i ∈ [n], Ai • Ȳ ≥ 1− 2ε and Tr(Ȳ) ≤ 1 +O(ε)OPT .

Therefore, Ȳ
1−2ε

gives a (1 +O(ε))-approximate solution to the covering SDP (7.2).

Acknowledgements
We thank Richard Peng for helpful conversations. This material is based upon work

partly supported by the National Science Foundation under Grant CCF-1319460.

Appendix

7.A Missing Proofs for Section 7.2

We need the following chain rule for the derivative of matrix exponential:

Proposition 7.18 ([162]). If X(t) is a differentiable function from reals to symmetric

matrices,

d

dt
eX(t) =

∫ 1

α=0

eαX(t)dX(t)

dt
e(1−α)X(t)dα .

Proof of Lemma 7.3. According to Proposition 7.18, we have

f ′(t) = A •
∫ 1

α=0

eα(Ψ+tA)Ae(1−α)(Ψ+tA)dα

Suppose further that A = PP T . Then, we can write

f ′(t) =

∫ 1

α=0

Tr
(
P T eα(Ψ+tA)PP T e(1−α)(Ψ+tA)P

)
dα

However, since P T eα(Ψ+tA)P � 0 and P T e(1−α)(Ψ+tA)P � 0, we conclude that P T eα(Ψ+tA)P•
P T e(1−α)(Ψ+tA)P ≥ 0 and therefore f ′(t) ≥ 0 for all reals t.

199

Next, applying Lemma 7.1 we have that

f ′(t) =

∫ 1

α=0

Tr
(
Aeα(Ψ+tA)Ae(1−α)(Ψ+tA)

)
dα ≤

∫ 1

α=0

Tr
(
A2eΨ+tA

)
dα

= A2 • eΨ+tA ≤ εA • eΨ+tA .

�

7.B Missing Proofs for Section 7.5

7.B.1 The Gradient Descent Lemma

In this section, we provide the detailed analysis of the symmetric case (i.e., when T+

is chosen) in the proof for Lemma 7.10.

Notice that fµ(x(k)) ≤ 0 together with Proposition 7.9.d tells us that
∑

i∈[n] x
(k)
i Ai �

(1 + ε)I. Combining it with Fact 7.14 we have
∑

i∈[n]

(
x

(k+1)
i − x(k)

i

)
Ai � −4α

3
(1 +

ε)I � −5α
3
I and therefore 0 � B � −5α

3µ
I = − 5ε

12
I. Applying Lemma 7.3.b with

0 � B � − 5ε
12
I to (7.6), we have

fµ(x(k))− fµ(x(k+1)) ≥ 1Tx(k+1) − 1Tx(k) − µ
∫ 1

0

B • eΨ · e−5ετ/12dτ

≥ 1Tx(k+1) − 1Tx(k) − (1− ε/4)µB • eΨ .

Recall that, for each i ∈ [n] satisfying x
(k+1)
i 6= x

(k)
i , we must have eΨ •Ai − 1 > ε

by the definition of T+(·). Therefore, multiplying both sides by x
(k+1)
i − x(k)

i ≤ 0 and

summing up over i ∈ [n], we obtain

µB • eΨ = eΨ • (
∑
i∈[n]

(x
(k+1)
i − x(k)

i)Ai) ≤ (1 + ε)(1Tx(k+1) − 1Tx(k)) .

This further implies that (after some careful term rearranging)7

1Tx(k+1) − 1Tx(k) − (1− ε/4)µB • eΨ ≥ 2

3
(1Tx(k+1) − 1Tx(k) − µB • eΨ)

=
2

3
〈∇fµ(x(k)), x(k) − x(k+1)〉 ≥ 0 .

Above, the last inequality is again by our definition of T−: for each i ∈ [n] satisfying

x
(k)
i 6= x

(k+1)
i , it must satisfy that ∇ifµ(x(k)) < −ε and x

(k)
i ≤ x

(k+1)
i . In conclusion,

we arrive at the inequality

fµ(x(k))− fµ(x(k+1)) ≥ 2

3
〈∇fµ(x(k)), x(k) − x(k+1)〉 ≥ 0 .

7Indeed, µB•eΨ ≤ (1+ε)(1Tx(k+1)−1Tx(k)) implies that (1−3ε/4)·µB•eΨ ≤ 1Tx(k+1)−1Tx(k)

because both sides are nonpositive and 1 − 3ε/4 ≥ 1
1+ε for our choice of ε. Multiplying both sides

by 1/3, we have that (1/3− ε/4) · µB • eΨ ≤ (1/3) · (1Tx(k+1) − 1Tx(k)). This is now equivalent to
1Tx(k+1) − 1Tx(k) − (1− ε/4)µB • eΨ ≥ 2

3 (1Tx(k+1) − 1Tx(k) − µB • eΨ).

200

7.B.2 The Coupling Lemma

The main idea in our proof to Lemma 7.12 is to divide the gradient vector ∇f(x) ∈
[−1,∞)n into four components, the component containing large coordinates (i.e., big-

ger than 1), the component containing positive small coordinates (i.e., in (ε, 1]), the

component containing negative small coordinates (i.e., in [−1,−ε)), and the compo-

nent containing negligible coordinates (i.e., in [−ε, ε]). The large gradients are to be

taken care by the gradient descent lemma, the small (positive and negative) gradients

are to be taken care by the mirror descent lemma. Formally,

Proof of Lemma 7.12. By convexity, the distance fµ(x(k)) − fµ(u) for an arbitrary

u ≥ 0 is upper bounded as follows:

α(fµ(x(k))− fµ(u)) ≤ 〈α∇fµ(x(k)), x(k) − u〉
= 〈αη(k), x(k) − u〉+ 〈αξ(k−), x(k) − u〉+ 〈αξ(k+), x(k) − u〉+ 〈αζ(k), x(k) − u〉 ,

(7.7)

where

• ξ(k−)
i

def
= T−(∇ifµ(x(k))) ∈ [−1,−ε) is the truncated gradient, capturing small nega-

tive coordinates.

• ξ(k+)
i

def
= T+(∇ifµ(x(k))) ∈ (ε, 1] is the truncated gradient, capturing small positive

coordinates.

• η(k)
i

def
=

{
∇ifµ(x(k))− 1, if ∇ifµ(x(k)) ≥ 1;

0, otherwise.

}
∈ [0,∞), capturing the large coordi-

nates.

• ζ(k)
i

def
=

{
∇ifµ(x(k)), if ∇ifµ(x(k)) ∈ [−ε, ε];
0, otherwise.

}
∈ [−ε, ε], capturing the negligible co-

ordinates.

We analyze the four components of (7.7) one by one.

The ζ component is small: if fµ(u) ≤ 0, we have

〈αζ(k), x(k) − u〉 ≤ αε · (1Tx(k) + 1Tu) ≤ αε · (1 + ε)OPT + αε · 1Tu (7.8)

where the last inequality is because fµ(x(k)) ≤ 0 from Lemma 7.10.

The η component can be upper bounded with the help from Lemma 7.10 as follows.

Note that η
(k)
i 6= 0 only if i ∈ B(k) (where recall from Lemma 7.10 that B(k) is the

set of indices whose ∇ifµ(x(k)) is no less than 1). In particular, if i ∈ B(k) we have

η
(k)
i = ∇ifµ(x(k))− 1 < ∇ifµ(x(k)), and thus Lemma 7.10 gives

4(fµ(x(k))− E[fµ(x(k+1)))]

α
≥
∑
i∈B(k)

x
(k)
i · ∇ifµ

(
x(k)
)
≥ 〈η(k), x(k)〉

=⇒ 〈αη(k), x(k) − u〉 ≤ 〈αη(k), x(k)〉 ≤ 4(fµ(x(k))− E[fµ(x(k+1))])

201

Finally, the ξ components are upper bounded by Lemma 7.11 as follows. Letting

γ = ξ(k−) if T(k) = T−, and γ = ξ(k+) if T(k) = T+, we have that

〈αξ(k−), x(k) − u〉+ 〈αξ(k+), x(k) − u〉 = 2E[〈αγ, x(k) − u〉]
≤ 2α2OPT + 2Vx(k)(u)− 2E[Vx(k+1)(u)] ,

where the expectation is over the random choice of T at iteration k.

Together, we obtain

α(fµ(x(k))− fµ(u)) ≤ 〈αη(k), x(k) − u〉+ 〈αξ(k−) + αξ(k+), x(k) − u〉+ 〈αζ(k), x(k) − u〉

≤ 4(fµ(x(k))− E[fµ(x(k+1))]) + 2α2OPT + 2Vx(k)(u)− 2E[Vx(k+1)(u)]

+ αε · (1 + ε)OPT + αε1Tu

≤ 4(fµ(x(k))− E[fµ(x(k+1))]) + 2
(
Vx(k)(u)− 2E[Vx(k+1)(u)]

)
+ α · 2εOPT + α · ε1Tu .

�

7.B.3 The Mirror Descent Lemma

In this subsection, we are going to view our step x(k) → x(k+1) as a mirror descent

step, and prove Lemma 7.11. We emphasize that this subsection is included in this

paper only for the sake of completeness: it is almost a simple replication of the proof

of [7, Lemma 3.3].

Recall that ξ
(k)
i

def
= T(k)(∇ifµ(x(k))) ∈ [−1, 1] is the truncated gradient at step

k, and satisfies that ξ
(k)
i = ∇ifµ(x(k)) for all coordinates i such that ∇ifµ(x(k)) ∈

[−1, 1] \ [−ε, ε]. We can verify that our careful choice of x(k) → x(k+1) is in fact a

mirror descent step on the truncated gradient:

Claim 7.19.

x(k+1) = arg min
z≥0

{
Vx(k)(z) + 〈αξ(k), z − x(k)〉

}
. (7.9)

Proof. This can be verified coordinate by coordinate, because the arg min function is

over all possible z ≥ 0, where this constraint does not impose any inter-coordinate

constraint.

In other words, by substituting the definition of Vx(k)(z), we only need to verify

that

x
(k+1)
i = arg min

zi≥0

{(
zi log

zi

x
(k)
i

+ x
(k)
i − zi

)
+ αξ

(k)
i · (zi − x

(k)
i)

}
def
= arg min

zi≥0
{g(zi)} .

At this point, the univariate function g(zi) is convex and has a unique minimizer.

Since the gradient d
dzi
g(zi) = log zi

x
(k)
i

+ αξ
(k)
i , this unique minimizer is indeed zi =

202

x
(k)
i · e−αξ

(k)
i , finishing the proof of Claim 7.19. �

After confirming that our iterative step in PosSDPSolver is indeed a mirror descent

step, it is not hard to deduce Lemma 7.11 based on the proof of the classical mirror

descent analysis.

Proof of Lemma 7.11. We deduce the following sequence of inequalities:

〈αξ(k), x(k) − u〉 = 〈αξ(k), x(k) − x(k+1)〉+ 〈αξ(k), x(k+1) − u〉
¬
= 〈αξ(k), x(k) − x(k+1)〉+ 〈−∇Vx(k)(x(k+1)), x(k+1) − u〉
­
= 〈αξ(k), x(k) − x(k+1)〉+ Vx(k)(u)− Vx(k+1)(u)− Vx(k)(x(k+1))

®

≤
∑
i

(
αξ

(k)
i · (x(k) − x(k+1))− |x(k+1)

i − x(k)
i |2

2 max{x(k+1)
i , x

(k)
i }

)
+
(
Vx(k)(u)− Vx(k+1)(u)

)
¯

≤
∑
i

(α2ξ
(k)
i)2 ·max{x(k+1)

i , x
(k)
i }

2
+
(
Vx(k)(u)− Vx(k+1)(u)

)
(7.10)

°

≤ 2

3
α21Tx(k) +

(
Vx(k)(u)− Vx(k+1)(u)

)
±

≤ α2OPT +
(
Vx(k)(u)− Vx(k+1)(u)

)
Here, ¬ is due to the minimality of x(k+1) in (7.9), which implies that ∇Vx(k)(x(k+1))+

αξ(k) = 0. ­ is due to the triangle equality of Bregman divergence:

∀x, y ≥ 0, 〈−∇Vx(y), y − u〉 = 〈∇w(x)−∇w(y), y − u〉
= (w(u)− w(x)− 〈∇w(x), u− x〉)− (w(u)− w(y)− 〈∇w(y), u− y)〉)
− (w(y)− w(x)− 〈∇w(x), y − x〉)

= Vx(u)− Vy(u)− Vx(y) .

® is because Vx(y) =
∑

i yi log yi
xi

+ xi− yi ≥
∑

i
1

2 max{xi,yi} |xi− yi|
2. ¯ is by Cauchy-

Schwarz. ° is because we have x
(k+1)
i ≤ 4

3
x

(k)
i owing to Fact 7.14. ± is because we have

1Tx(k) ≤ 3
2
OPT owing to Proposition 7.9.d (and fµ(x(k)) ≤ 0 from Lemma 7.11). �

7.B.4 Proof of Theorem 7.13

Proof of Theorem 7.13. We begin by telescoping the inequality in Lemma 7.12 for

k = 0, 1, . . . , T − 1, and choosing u = ũ
def
= (1− ε/2)x∗, which satisfies 1Tu ≤ OPT by

the definition of x∗:

E
[
α
T−1∑
k=0

(fµ(x(k))−fµ(ũ))
]
≤ 4(fµ(x(0))−E[fµ(x(T))])+2

(
Vx(0)(ũ)−E[Vx(T)(ũ)]

)
+αT ·3εOPT .

(7.11)

203

Above, the expectation is over the randomness of the entire algorithm. Notice that,

the second term on the right hand side of (7.11) is upper bounded by

Vx(0)(ũ)− E[Vx(T)(ũ)] ≤ Vx(0)(ũ)

≤
∑
i

ũi log
ũi

x
(0)
i

+ x
(0)
i ≤

∑
i

ũi log
1/‖Ai‖spe

(1− ε/2)/n‖Ai‖spe
+

1− ε/2
n‖Ai‖spe

≤ 1T ũ · log(2n) + 1 ≤ 2OPT · log(2n) . (7.12)

Here, we have used the fact that ũi ≤ 1
‖Ai‖spe since ũiAi � I.

From here, we want to prove that E[fµ(x(T))] ≤ −(1 − 5ε)OPT by way of con-

tradiction. Suppose not, that is, E[fµ(x(T))] > −(1 − 5ε)OPT, we have fµ(x(0)) −
E[fµ(x(T))] ≤ 0 + (1 − 5ε)OPT ≤ OPT, giving an upper bound on the first term on

the right hand side in (7.11). Substituting this and (7.12) to (7.11), and dividing αT

on both sides, we get

1

T

T−1∑
k=0

(E[fµ(x(k))]− fµ(ũ))

≤ 4

αT
(fµ(x(0))− E[fµ(x(T))]) +

2

αT

(
Vx(0)(ũ)− E[Vx(T)(ũ)]

)
+ 3εOPT

≤ 4OPT

αT
+

4OPT · log(2n)

αT
+ 3εOPT .

Finally, since we have chosen T ≥ 8 log(2n)
αε

, the above right hand side is no greater

than 4εOPT. This, by an averaging argument, tells us the existence of some k ∈
{0, 1, . . . , T − 1} with E[fµ(x(k))] ≤ fµ(ũ) + 4εOPT ≤ −(1− 5ε)OPT (where we have

used fµ(ũ) ≤ −(1 − ε)OPT from Proposition 7.9.b). However, it contradicts to the

hypothesis that E[fµ(x(T))] > −(1 − 5ε)OPT because fµ(x(k)) ≥ fµ(x(T)) according

to Lemma 7.10. This finishes the proof that E[fµ(x(T))] ≤ −(1− 5ε)OPT.

The fact that x(T)

1+ε
provides a (1 − O(ε)) approximate solution for the packing

SDP is due to Proposition 7.9.e and Markov’s inequality which states that fµ(x(T)) ≤
−(1−O(ε))OPT with at least constant probability. �

7.C Missing Proofs for Section 7.6

The proof of Lemma 7.15 is completely analogous to its LP variant in [7]. We include

it only for the sake of completeness.

Lemma 7.15. For any T ≥ 8
αε

= Ω(log(nm/ε)
ε3

), we have that E[Tr(Ȳ)] ≤ (1+7ε)OPT.

Proof. Telescoping Lemma 7.12 for k = 0, 1, . . . , T − 1 and u = 0, we have that

1

T
E
[T−1∑
k=0

〈∇fµ(x(k)), x(k)〉
]

204

≤ 4

αT
(fµ(x(0))− E[fµ(x(T))]) +

2

αT

(
Vx(0)(0)− E[Vx(T)(0)]

)
+ 2εOPT

≤ 4

αT
(fµ(x(0))− E[fµ(x(T))]) +

2

αT
Vx(0)(0) + 2εOPT

≤ 4

αT
(fµ(x(0))− E[fµ(x(T))]) +

2

αT
+ 2εOPT . (7.13)

Above, the last inequality uses the fact that Vx(0)(0) = 1Tx(0) ≤ 1.

We now respectively lower and upper bound the two sides of (7.13) as follows.

One one hand, using the definition of gradient, the left hand side of (7.13) is lower

bounded as

〈∇fµ(x(k)), x(k)〉 =
∑
i∈[n]

x
(k)
i Ai • e

1
µ

(∑
i∈[n] x

(k)
i Ai−I

)
− 1Tx(k)

≥ (1− ε)I • e
1
µ

(∑
i∈[n] x

(k)
i Ai−I

)
− 1Tx(k) −m · (ε

nm
)4

= (1− ε)Tr(Y (x(k)))− 1Tx(k) −m · (ε

nm
)4 .

Above, the (only) inequality is because ifB
def
=
∑

i∈[n] x
(k)
i Ai has eigenvalues λ1, . . . , λm ≥

0, then
∑

i∈[n] x
(k)
i Ai • e

1
µ

(∑
i∈[n] x

(k)
i Ai−I

)
=
∑

j∈[m] λj · e(λj−1)/µ. However, if there are

some λj satisfying λj < 1 − ε, the corresponding term e
1
µ

(λj−1) ≤ e−ε/µ = (ε
nm

)4 is

very small, and there are at most m such small terms. As a result, one must have∑
j∈[m] λj ·e(λj−1)/µ ≥ (1−ε)

∑
j∈[m] ·e(λj−1)/µ−m·(ε

nm
)4 = (1−ε)I•e

1
µ

(∑
i∈[n] x

(k)
i Ai−I

)
−

m · (ε
nm

)4.

On the other hand, since x
(T)
i Ai ≤ (1 + ε)I by Proposition 7.9.d, we must have

1Tx(T) ≤ (1 + ε)OPT by the definition of OPT, and thus fµ(x(T)) ≥ 0− (1 + ε)OPT.

This gives an upper bound on the right hand side of (7.13) that is 4(1+ε)
αT

OPT + 2
αT

+

2εOPT ≤ 3εOPT, due to our choice of T ≥ 8
αε

.

Together, we deduce from (7.13) that

(1− ε) 1

T

T−1∑
k=0

E
[
Tr(Y (x(k)))− 1Tx(k)

]
−m · (ε

nm
)4 ≤ 3εOPT

=⇒ E[Tr(Ȳ)] = TrE
[1

T

∑
k

Y (x(k))
]
≤ 1

T

∑
k

E[1Tx(k)] + 4εOPT ≤ (1 + ε)OPT + 4εOPT ,

where the last inequality is from 1Tx(k) ≤ (1+ε)OPT for each k (see Proposition 7.9.d).

�

As mentioned earlier, our proof for Lemma 7.16 below is fundamentally different

from its much weaker version in [7].

Lemma 7.16. For any T ≥ 8
αε

, with probability at least 1− ε
100

we have Ai•Ȳ ≥ 1−2ε

for all i ∈ [n].

205

Proof. For each iteration k = 0, . . . , T − 1 and coordinate i ∈ [n], we denote by

• γ(k)
i

def
= T(k)(∇ifµ(x(k))) ∈ [−1, 1] the actual truncated gradient, and

• ξ(k)
i

def
= 1

2

(
T−(∇ifµ(x(k))) + T+(∇ifµ(x(k)))) ∈ [−1/2, 1/2] the expected truncated

gradient.

It is easy to verify that E[γ(k)] = ξ(k), where the expectation is over the random choice

of T(k). In addition, since ∇ifµ(x(k)) = 2ξ
(k)
i whenever ∇ifµ(x(k)) ∈ [−1, 1] \ [−ε, ε]

owing to the definition of the thresholding functions, we automatically have

∇ifµ(x(k)) ≥ 2ξ
(k)
i − ε .

In the first step, recalling that x
(T)
i = x

(0)
i · e−α

∑T−1
k=0 γ

(k)
i by the definition of our

update rule (Line 8 of PosSDPSolver), and recalling that x
(T)
i Ai � (1 + ε)I ≺ 1.5I

due to Proposition 7.9.d which implies x
(T)
i ≤ 1.5

‖Ai‖spe , we automatically have that for

every i ∈ [n], independent of the randomness of the algorithm, it always satisfies that

1

T

T−1∑
k=0

γ
(k)
i ≥ −

log(1.5/(‖Ai‖spe · x(0)
i))

αT
≥ − log(2n)

αT
≥ −ε

8
.

Above, the second inequality is due to our choice of x(0), and the third inequality is

due to our choice of T . Next, define Zk,i
def
=
∑k−1

j=0(γ
(k)
i −ξ

(k)
i), we have that {Zk,i}Tk=1 is

a martingale, satisfying that E[Zk,i|Z1,i, . . . , Zk−1,i] = Zk−1,i and |Zk,i−Zk−1,i| ≤ 1/2.

By the Azuma-Hoeffding inequality, we have

Pr
[1

T

T−1∑
k=0

(ξ
(k)
i − γ

(k)
i) < −ε

4

]
= Pr

[ZT,i
T

>
ε

4

]
≤ e

−ε2T
8 ≤ ε

100n
.

By a union bound, with probability at least 1− ε/100, for every i ∈ [n],

1

T

T−1∑
k=0

∇ifµ(x(k)) ≥ 1

T

T−1∑
k=0

2ξ
(k)
i − ε = 2

1

T

T−1∑
k=0

(ξ
(k)
i − γ

(k)
i) + 2

1

T

T−1∑
k=0

γ
(k)
i − ε

≥ 2 · (−ε
4

)− ε

4
− ε > −2ε .

In other words, with probability at least 1− ε/100, for every i ∈ [n],

Ai • Ȳ − 1 =
1

T

T−1∑
k=0

(Ai • Y (x(k))− 1) =
1

T

T−1∑
k=0

∇ifµ(x(k)) ≥ −2ε . �

206

Chapter 8

Spectral Sparsification and Regret

Minimization Beyond Matrix

Multiplicative Updates

This chapter is based on the result published in [4], and its further edits

can be found at:

http: // arxiv. org/ abs/ 1506. 04838 .

In this paper, we provide a novel construction of the linear-sized spectral sparsifiers

of Batson, Spielman and Srivastava [26]. While previous constructions required Ω(n4)

running time [26, 168], our sparsification routine can be implemented in almost-

quadratic running time O(n2+ε).

The fundamental conceptual novelty of our work is the leveraging of a strong

connection between sparsification and a regret minimization problem over density

matrices. This connection was known to provide an interpretation of the randomized

sparsifiers of Spielman and Srivastava [151] via the application of matrix multiplica-

tive weight updates (MWU) [39, 160]. In this paper, we explain how matrix MWU

naturally arises as an instance of the Follow-the-Regularized-Leader framework and

generalize this approach to yield a larger class of updates. This new class allows us to

accelerate the construction of linear-sized spectral sparsifiers, and give novel insights

on the motivation behind Batson, Spielman and Srivastava [26].

8.1 Introduction
A powerful tool to handle large-scaled graphs is to compress them by reducing their

sizes, while preserving properties of interest such as the size of cuts [28, 29] or the

routability of certain flows [41]. This sparsification procedures also play an important

role as fundamental primitives behind many fast graph algorithms [88, 128]. In this

paper, we consider the strong notion of spectral sparsifier put forward by Spielman

207

http://arxiv.org/abs/1506.04838

and Teng [152, 153]: G′ is (1 + ε)-spectral approximate to G if G′ is a subgraph of G

with possibly reweighted edges, and for every x ∈ Rn,

xTLGx ≤ xTLG′x ≤ (1 + ε)xTLGx or equivalently LG � LG′ � (1 + ε)LG ,

where LG and LG′ are respectively the graph Laplacian matrices of G and G′.

The algorithm of Spielman and Srivastava [151] constructs (1 + ε)-spectral spar-

sifiers with O(n log n/ε2) edges in nearly linear time by randomly sampling edges

proportionally to their effective resistance. In a seminal paper, Batson, Spielman and

Srivastava [26] give (1+ε)-spectral sparsifiers with O(n/ε2) edges, but their construc-

tion and subsequent algorithm by [168] require O(mn3/ε2) and O(mn2/ε2 + n4/ε4)

time respectively. We shall refer to their analysis and algorithm the BSS for short.

The main contribution of this paper is to give an improved construction of linear-sized

spectral sparsifiers that runs in almost-quadratic time.

Theorem 8.1. For any even integer q ≥ 2 and any ε ∈ (0, 1
4
√
q
), there is an algo-

rithm that, for any weighted undirected graph G with n vertices and m edges, with

probability at least 1 − n−Ω(1), constructs a (1 + ε)-spectral sparsifier G′ that has at

most O(
√
qn/ε2) edges in time Õ(mn1+1/q/ε5).

Since q can be chosen as a large constant and the graph can be preprocessed to

reduce the number of edges to m = O(n log n), the above running time is almost

quadratic in terms of n.

Graph sparsification is a special case of sparsifying sums of rank-1 PSD matrices

(see [26] and Appendix 8.B). Our algorithm for Theorem 8.1 also applies to this more

general problem with an almost cubic running time, which is stil an improvement over

the previous quartic running time.

Theorem 8.2. For any even integer q ≥ 2 and any ε ∈ (0, 1
4
√
q
), there is an algorithm

that, for any decomposition I =
∑m

i=1 viv
T
i ∈ Rn×n of rank-1 matrices, with probability

at least 1 − n−Ω(1), constructs scalars si ≥ 0 with |{i : si > 0}| ≤ O(
√
qn/ε2) that

satisfies I �
∑m

i=1 siviv
T
i � (1 + ε)I in time Õ(n3+1/q/ε5 +mn/ε4).

The fundamental conceptual novelty of our work is the establishment of a deep

connection between graph or matrix sparsifications and a regret minimization problem

over PSD matrices (see Section 8.1.1). This relation was known [39, 160] for the

randomized sparsifiers of Spielman and Srivastava [151], for which the underlying

matrix concentration bound can be easily recovered as an application of the matrix

version of Multiplicative Weight Updates (MWU) [11, 125], a standard online learning

algorithm. However, it was not clear how this interpretation could be extended to

BSS, despite a clear analogy was also noted by de Carli Silva, Harvey and Sato (see

[39, Section 8]). Both the MWU and the BSS rely on potential function arguments,

where the potential is essentially a robust version to capture of the maximum and

minimum graph eigenvalues. In this paper, we provide the missing piece of this

208

interpretation: we consider a generalization of MWU to a larger class of updates, and

show that the BSS can be recovered as an instance of this class. Beyond our faster

implementation of sparsification, we believe that this interpretation is of independent

interest and may be useful in other areas in which the argument of BSS has found

application [111].

We focus on updates coming from the follow-the-regularized-leader (FTRL) frame-

work. The choice of regularizer in this framework fully determines the update strat-

egy and the corresponding potential function. See for example the recent survey by

Hazan [72]. The standard MWU argument can be recovered as an instance of FTRL,

where the regularizer is chosen to be the entropy function. In contrast, we choose a

different class of regularizers consisting of all `1−1/q semi-norms for q ≥ 2, and provide

corresponding regret bounds in Section 8.3. In Section 8.4 and Section 8.5, we show

that the choice q = 2 recovers an algorithm which is somewhat similar to BSS, and

produces linear-sized spectral sparsifiers. This algorithm can be implemented to run

in a O(mn3/2) time. Finally, in Section 8.6, we consider regularizers corresponding

to large, constant q > 2, which yield very different algorithms from BSS with almost

quadratic running time.

8.1.1 Regret Minimization

In this subsection, we discuss our contribution on the problem of regret minimization

in online linear optimization [72]. Our technical results apply to the more general

case of online PSD linear optimization over the set of density matrices, but our key

contributions are described more concisely in the scalar case.

Let ∆n = {x ∈ Rn : x ≥ 0 ∧ 1Tx = 1} be the unit simplex in Rn, and we call

a vector in ∆n an action. A player is going to play T actions x0, . . . , xT−1 ∈ ∆n in a

row; only after playing xk, the player observes a feedback vector fk ∈ Rn, which may

depend on xk, and suffers the linear loss 〈fk, xk〉. The regret minimization problem

asks us to device a strategy for the player that minimizes the regret, i.e., difference

between the total loss suffered by the player and the loss suffered by the a posteriori

best fixed action u ∈ ∆n:

minimize max
u∈∆n

R(u), where R(u)
def
=
∑T−1

k=0 〈fk, xk − u〉 .

A well-known strategy for this problem is to update xk in a multiplicative fashion:

for each coordinate i ∈ [n], define xk+1,i to be proportional to xk,i · exp−α·fk,i for some

parameter α > 0. This strategy is known as the multiplicative weight update. Its

classical analysis [10] implies

∀u ∈ ∆n, R(u) =
T−1∑
k=0

〈fk, xk − u〉 ≤
α

2

T−1∑
k=0

‖fk‖2
∞ +

log n

α
. (8.1)

The first term on the righthand side contributes a regret of ‖fk‖2
∞ that is paid at

every iteration, and we call it the width term. The second term is a fixed start-up

209

cost corresponding to ‘how long it takes the update to explore the whole ∆n’, and

we call it the diameter term. If for all iterations k, ‖fk‖∞ is upper bounded by ρ,

known as the width of the problem, the trade-off between the width and diameter

terms can be be optimized by the choice of α > 0 to show that the total regret is at

most O(ρ
√
T log n).

Optimization Interpretation. We take an optimization perspective to describe

MWU and its generalizations by characterizing our strategies as instances of the

follow-the-regularized-leader and mirror descent frameworks. Let w(·) be a strongly

convex function over the simplex, known as the regularizer. The follow-the-regularized-

leader strategy with parameter α > 0 can be described as a trade-off between mini-

mizing the loss incurred so far and the value of the regularizer.

FTRL: xk+1 = arg min
z∈∆n

{
w(z) + α

∑k
j=0〈fj, z〉

}
. (8.2)

Similarly, the mirror-descent strategy optimizes a trade-off

MirrorDescent: start with x0 =
(

1
n
, . . . , 1

n

)
; xk+1 ← arg min

z∈∆n

{Vxk(z) + α〈fk, z〉} ,

(8.3)

where Vx(y)
def
= w(y)−w(x)−〈∇w(x), y−x〉 is the induced Bregman divergence. Under

mild assumptions (which are satisfied in this paper, see Appendix 8.A), it is easy to

check that MirrorDescent is equivalent to FTRL. We will therefore interchangeably

use MirrorDescent and FTRL in the rest of the paper, because FTRL gives the cleaner

description for the updates, while MirrorDescent provides a simpler analysis. The

MWU strategy is an instance of the two equivalent strategies above, with the choice

of regularizer w(x)
def
=
∑

i xi log xi − xi, i.e. the (negative) entropy function.

Previous Work. The MWU is a simple but extremely powerful algorithmic tool

that has been repeatedly discovered in theory of computation, machine learning, op-

timization, and game theory (see for instance the survey [10] and the book [40]).

Since MWU has found numerous important applications in semidefinite program-

ming [11, 9], constraint satisfaction problem [154], maximum flow [46], sparsest

cut [149], balanced separator [126], small set expansion [23], traveling salesman prob-

lem [12], zero-sum games [51], and fractional packing problems [68]. The analysis of

follow-the-regularized-leader can be found in the surveys [72, 142], while that of the

mirror descent appears in the the book [27].

Beyond MWU. Historically, MWU has been extended at least from three orthogo-

nal directions. In this paper, we pursue all these three directions simultaneously (see

our summary in Table 8.1.)

1. From vector to matrix. Instead of studying actions x in the forms of n-

dimensional probability distributions, one can study density matrices X in

∆n×n, the set of PSD matrices whose trace equals to one. This is a generaliza-

210

tion from a set of “experts” corresponding to {e1, . . . , en} to all combinations

of the form
∑n

i=1 tiei where t is on the n-dimensional unit sphere Sn−1. Accord-

ingly, each loss vector fk can be generalized to a symmetric matrix Fk ∈ Rn×n,

so the loss of any density matrix X becomes Fk •X = Tr(FkX). (If X = vvT

is of rank one, then Fk • X = vTFkv.) Among many applications, the matrix

version of MWU has been used in designing algorithms for solving semidefi-

nite programs [11] and finding balanced separators [126], and in the proof of

QIP = PSPACE [81].

2. Local norm convergence. The width term ‖fk‖2
∞ in the regret upper bound

(8.1) can be replaced with 〈|fk|, xk〉 · ‖fk‖∞. (Here, we have used |fk| to denote

coordinate-wise absolute value of fk.) This technique is known as the local-

norm technique because 〈|fk|, xk〉 is a local way to measure the length of fk
with respect to xk. Since 〈|fk|, xk〉 · ‖fk‖∞ is never larger than ‖fk‖2

∞, as well as

xk ∈ ∆n, this new upper bound can only be smaller than the original. Indeed,

this tighter bound has proved useful in the multi-arm bandit problem [2], and in

the solution of positive linear programs [7]. It also underpins the negative-width

technique of [10].

3. Change of regularizer. If one replaces the entropy regularizer with the `1−1/q-

regularizer w(x) = − q
q−1

∑n
i=1 x

1−1/q
i for any q ≥ 2, the corresponding update

rule changes

from xk+1,i = exp−
∑k
j=0 αfj,i+c to xk+1,i =

(∑k
j=0 αfj,i + c

)−q
,

where in both cases c is the unique constant that ensures xk+1 ∈ ∆n. The

FTRL framework is very powerful as the choice of regularizer w(x) completely

determines both the form and the analysis of the update strategy. Ultimately,

different regularizers achieve different trade-offs between the width and diameter

terms in Equation (8.1). For instance, the `1/2-regularizer yields the following

regret bound

∀u ∈ ∆n, R(u) ≤ O(α) ·
T−1∑
k=0

〈|fk|, xk〉 ·max
i∈[n]
|fk,i
√
xk,i|+

2
√
n

α
.

The diameter term is now 2
√
n, much worse than log n in the entropy case in

(8.1). However, since (the local norm version of) the width term goes from

〈|fk|, xk〉 · ‖fk‖∞ to 〈|fk|, xk〉 ·maxi∈[n] |fk,i
√
xk,i|, the width term may become

smaller.. This is exactly the case in the sparsification case, where the feedback

vectors, corresponding to the edges added to the sparsifier, may be weighted up

by a factor as large as n, so that we may have ‖fk‖∞ ≥ n. In this scenario, the

use of a more stongly-convex regularizer, such as `1/2, allows us to measure the

width in a more convenient local norm and yields the BSS linear-sized sparsi-

fier(see Figure 8-1 on page 222 for a visual comparison of different regularizers).

211

Paper
Allow

Matrix?
Allow Local

Norm?
Allow Non-Entropy

Regularizer?

[131, 65] [9, 10] no no no

[2, 7] no yes no

[13, 36] no yes yes

[11, 126] yes no no

[74] yes yes no

[this paper] yes yes yes

Table 8.1: Comparisons among prior results on the regret minimization problem.

We point out that the `1−1/q-regularizers have also been used, albeit solely in

the scalar case, by the machine learning community to obtain asymptotically

optimal strategies for the multi-arm bandit problem [13, 36].

8.1.2 Extensions

High Rank Sparsification. Our same algorithm of Theorem 8.1 and 8.2 also ap-

plies to sparsifying sums of PSD matrices, rather than just rank-1 PSD matrices. This

recovers the same result of de Carli Silva, Harvey, and Sato [39]. Such an extension

has been shown important for problems such as finding hypergraph sparsifiers, finding

sparse SDP solutions, and finding sparsifiers on subgraphs. However, as in the rank-1

case, the detailed running time of our algorithm has to be examined separately for

each specific sparsification problem.

As an example, given a weighted undirected graph G that is decomposed into

edge-disjoint subgraphs, the goal of linear-sized subgraph sparsification is to construct

a (1 + O(ε))-spectral sparsifier G′ to G, so that G′ consists only of the reweighted

versions of at most n/ε2 given subgraphs. Our same algorithm for Theorem 8.1 runs

in time Õ(mn1+1/q/ε5) for this problem.

Weak Unweighted Graph Sparsification. Given κ ∈ [1,m/n], consider the

problem of finding a κ-spectral sparsifier of G containing O(m/κ) distinct edges from

E, without reweighting. This problem is very recently studied by Anderson, Gu and

Melgaard [8], our regret minimization framework allows us to design a simple and

almost-quadratic-time algorithm for this problem, improving from the quartic time

complexity of [8].

8.2 Preliminaries
Throughout this paper, for a cleaner representation that depends on the context, we

interchangeably use X • Y = 〈X, Y 〉 = Tr(XY) to denote the inner product between

two symmetric matrices. IfX is symmetric, we use eX to denote its matrix exponential

212

and logX to denote its matrix logarithm, when X is PSD. If X is symmetric with

eigendecomposition X =
∑n

i=1 λiviv
T
i we denote by |X| def

=
∑n

i=1 |λi|vivTi . For any

symmetric X, we use ‖X‖spe to denote the spectral norm of X, and λmax(X), λmin(X)

to denote its largest and smallest eigenvalues. We define ∆n×n
def
= {X ∈ Rn×n :

X � 0,TrX = 1} to be the set of positive semidefinite (PSD) matrices with trace

1. This should be seen as the matrix generalization of the n-dimensional simplex

∆n
def
= {x ∈ Rn : x ≥ 0,1Tx = 1}.

Regularizers and Bregman Divergence. We are interested in two types of regu-

larizers over ∆n×n, namely, w(X)
def
= X •(logX−I), known as the entropy regularizer,

and w(X)
def
= − q

q−1
TrX1−1/q for some q > 1, which we call the `1−1/q-regularizer. The

corresponding Bregman divergences VX(Y)
def
= w(Y) − w(X) − 〈∇w(X), Y −X〉 are

the following.

entropy case: VX(Y) = Y • (log Y − logX)− I • (Y −X) ,

`1−1/q case: VX(Y) = X−1/q • Y +
1

q − 1
TrX1−1/q − q

q − 1
TrY 1−1/q .

Note that both regularizers above and their Bregman divergences are convex over

the cone of PSD matrices.1 We now state some classical properties of Bregman

divergence. Their proofs are included in Appendix 8.D for completeness.

Lemma 8.3. The Bregman divergence of a convex differentiable function w(·) has

the properties:

• Non-negativity: VX(Y) ≥ 0 for all X, Y ≥ 0.

• The “three-point equality”: 〈∇w(X) − ∇w(Y), X − U〉 = VX(U) − VY (U) +

VY (X).

• Given X̃ � 0 and X = arg minZ∈∆n×n VX̃(Z) as the Bregman projection,

we have the “generalized Pythagorean theorem” for all U ∈ ∆n×n: VX̃(U) ≥
VX(U) + VX̃(X) ≥ VX(U).

8.3 Regret Minimization in Full Information
In this section, we consider the following setting of the regret minimization problem,

known as the full information setting. At each iteration k = 0, . . . , T − 1, the player

chooses an action Xk ∈ ∆n×n, receives a symmetric loss matrix Fk ∈ Rn×n and

suffers a loss 〈Fk, Xk〉. At this point, the player is allowed to observe the full matrix

Fk without any restriction.

Again, the goal of the player is to minimize the regret with respect to any fixed

matrix U ∈ ∆n×n:

R(U)
def
=
∑T−1

k=0 〈Fk, Xk − U〉 .
1While this is easy to check by taking the second derivative for the entropy regularizer, it is less

obvious for the `1−1/q regularizer. The latter follows easily from Lieb’s concavity theorem [96, 31].

213

The best choice of U in hindsight can be taken as the rank-1 projection over a min-

imum eigenvector of
∑T−1

k=0 Fk. As a result, the total loss for the best choice of U is

λmin

(∑T−1
k=0 Fk

)
.

Entropy Regularizer. If w(·) is the entropy regularizer, then (8.2) can be explicitly

written as

MirrorDescentexp : Xk = expcI−α
∑k−1
j=0 Fj , (8.4)

where c ∈ R is the unique constant that ensures TrXk = 1. This is also known as

the matrix multiplicative weight update method, and the following theorem gives its

regret bound.2

Theorem 8.4. In MirrorDescentexp, if the parameter α > 0 satisfies αFk � −I
for all iterations k = 0, 1, . . . , T − 1, then, for every U ∈ ∆n×n,

R(U)
def
=

T−1∑
k=0

〈Fk, Xk − U〉 ≤ α
T−1∑
k=0

(
Xk • |Fk|

)
· ‖Fk‖spe +

VX0(U)

α
.

We note that VX0(U) ≤ log n.

Our proof of Theorem 8.4 uses a technique known as the tweaked version of mirror de-

scent (see [167, 133]). We define an intermediate point X̃k+1 = arg minZ�0

{
VXk(Z)+

α〈Fk, Z〉
}

as the minimizer over Z � 0, rather than Z ∈ ∆n×n as in (8.3). Ac-

cordingly, the actual point Xk+1 equals to arg minZ∈∆n×n{VX̃k+1
(Z)}, the Bregman

projection of X̃k+1 back to the hyperplane TrZ = 1. This two-step interpretation of

mirror descent gives a very clean proof to our regret bound, and we defer this full

proof to Appendix 8.E.

`1−1/q regularizer. If w(·) is the `1−1/q regularizer, then (8.2) can be explicitly

written as

MirrorDescent`1−1/q
: Xk =

(
cI + α

∑k−1
j=0Fj

)−q
, (8.5)

where c ∈ R is the unique constant that ensures cI + α
∑k−1

j=0 Fj � 0 and TrXk = 1.

If we focus on the special case of q = 2 and each Fk having rank 1, the following

theorem gives the regret bound for MirrorDescent`1/2 .

2The scalar version of this theorem was proved for instance in [1, 143, 7]. A slightly different
matrix version of this theorem was proved in [74] (in particular, the authors of [74] have required
I � αFk � −I while in fact it suffices to only require αFk � −I.

214

Theorem 8.5. In MirrorDescent`1/2, if the parameter α > 0, and the loss matrix

Fk is rank one and satisfies X
1/2
k • αFk > −1 for all k, then, for every U ∈ ∆n×n,

R(U)
def
=

T−1∑
k=0

〈Fk, Xk − U〉 ≤ α ·
T−1∑
k=0

(Xk • Fk)(X1/2
k • Fk)

1 +X
1/2
k • αFk

+
VX0(U)

α
.

If we instead have X
1/2
k • αFk ≥ −1

2
, the above bound can be simplified as

R(U)
def
=

T−1∑
k=0

〈Fk, Xk − U〉 ≤ 2α ·
T−1∑
k=0

(Xk • Fk)(X1/2
k • Fk) +

VX0(U)

α
.

We note that VX0(U) ≤ 2
√
n.

We recommend the interested readers to see the proof of Theorem 8.5 in Appendix 8.E,

as it provides a straightforward generalization of Theorem 8.4 using regularizers other

than entropy.

Theorem 8.5 is only a special case of the following more general regret bound,

which holds for arbitrary q ≥ 2, and for Fk having arbitrary rank. At a first reading,

one can skip Theorem 8.6 because its sole purpose in this paper is to improve the

running time of graph sparsification from Õ(mn3/2) to Õ(mn1+1/q), as well as allowing

one to sparsify sums of high rank PSDs.

Theorem 8.6. In MirrorDescent`1−1/q
with q ≥ 2 and α > 0, if the loss matrix Fk

is either positive or negative semidefinite and satisfies αX
1/2q
k FkX

1/2q
k � − 1

2q
I for

all k, then for every U ∈ ∆n×n,

R(U)
def
=

T−1∑
k=0

〈Fk, Xk − U〉 ≤ O(qα)
T−1∑
k=0

(Xk • |Fk|) · ‖X1/2q
k FkX

1/2q
k ‖spe +

VX0(U)

α
.

We note that VX0(U) ≤ q
q−1

n1/q.

(The proof of Theorem 8.6 is deferred to Appendix 8.E.)

The key idea to prove Theorem 8.6 is to replace the use of the Sherman-Morrison

formula in the proof of Theorem 8.5 with the Woodbury formula so as to allow Fk to

be of high rank. It also uses the Lieb-Thirring trace inequality to handle arbitrary

q ≥ 2.)

8.4 Warm-Up: Upper-Sided Linear-Sized Sparsi-

fication
In this section and the next, we present our construction of linear-sized sparisifier

in the general matrix setting. Its specialization to graph sparsification appears in

Appendix 8.B, while its efficient implementation is discussed in Section 8.6. To show-

case how the regret bounds of Section 8.3 can be useful in the construction of spar-

sifiers, we start by describing a warm-up example in which we are only interested in

215

obtaining a single side of the sparsification guarantee.

Suppose we are given a decomposition of the identity matrix I =
∑m

e=1weL̂e,

where each L̂e satisfies

0 � L̂e � I and is of rank 1 and trace 1, i.e. L̂e = vvt for some v ∈ Rn with ‖v‖2 = 1.

The weights we > 0 may be unknown, though the trace guarantee ensures that∑
ewe = n. In this section, we are interested in finding some s ∈ ∆m satisfying∑m
e=1(nse) · L̂e � (1 + ε)I, while the sparsity of s —that is, |{e ∈ [m] : se > 0}|—

is at most O(n/ε2). We call this the upper-sided linear-sized spectral sparsification

because it only gives an upper bound on the eigenvalues of
∑m

e=1(nse) · L̂e and no

lower bound.

Consider the following algorithm that invokes the regret minimization framework

in Section 8.3 to solve this upper-sided sparsification. We choose

the `1/2 regularizer and α = ε/4
√
n for MirrorDescent`1/2 .

At iteration k, set the feedback matrix as Fk = −nL̂ek , where ek minimizes L̂e •Xk

over e ∈ [m]. 3

Before applying Theorem 8.5, let us first verify that the prerequisite X
1/2
k •αFk ≥

−1
2

holds. Because
∑

e∈[m]
we
n
L̂e •Xk = 1

n
I •Xk = 1

n
, by an averaging argument, we

must have L̂ek •Xk ≤ 1
n
. This further implies −αnL̂ek •X

1/2
k ≥ −α

√
n > −1

2
due to

the claim below.

Claim 8.7. For every X ∈ ∆n×n, we have L̂e •X1/2 ≤ (L̂e •X)1/2 for every e ∈ [m].

Proof. Without loss of generality, one can assume X to be diagonal. Next, since

L̂e = vev
T
e is of rank one, the desired inequality follows from Jensen’s inequality

vTe X
1/2ve ≤

√
vTe Xve and the fact that ‖ve‖2

2 = TrL̂e ≤ 1. �

Now, applying Theorem 8.5, we obtain that for every U ∈ ∆n×n,
T−1∑
k=0

〈−nL̂ek , Xk − U〉 ≤ 2α ·
T−1∑
k=0

(Xk • nL̂ek)(X
1/2
k • nL̂ek) +

2
√
n

α
.

After rearranging, and using L̂ek •Xk ≤ 1
n

and nL̂ek •X
1/2
k ≤

√
n we deduced earlier,〈n

T

T−1∑
k=0

L̂ek , U
〉
≤ 2α

T
·
T−1∑
k=0

(Xk • nL̂ek)(X
1/2
k • nL̂ek) +

1

T

∑
k

〈nL̂ek , Xk〉+
2
√
n

αT

≤ 2α

T
· T · 1 ·

√
n+ 1 +

2
√
n

αT
=
ε

2
+ 1 +

8n

εT
.

Finally, choosing T = 16n/ε2 and U to be the rank-1 projection over a maximum

eigenvector, we conclude that λmax(
n
T

∑T−1
k=0 L̂ek) ≤ 1 + ε.

3This choice naturally follows from a saddle-point interpretation of the problem, because it is the

subgradient of the function f(X)
def
= mins∈∆m

∑m
e=1(nseL̂e) •X at X = Xk. We have skipped the

explanation of this choice due to the space limitation.

216

This completes the description of our upper-sided linear-sized sparsification algo-

rithm. The full sparsification algorithm, in the next section, will essentially consists

of playing out this analysis on the lower and upper side at the same time.

We emphasize here that if one chooses the entropy regularizer by using MirrorDescentexp,

and chooses ek = e with probability proportional to we, a similar analysis from the

one above recovers the sparsification result of Spielman and Srivastava [151].

8.5 Linear-Sized Sparsification

As before, suppose we are given a decomposition of the identity matrix I =
∑m

e=1 weL̂e,

where each L̂e satisfies 0 � L̂e � I and is of rank 1 and trace 1. The weights we > 0

may be unknown and satsify
∑

ewe = n. In this section, we are interested in finding

scalars se ≥ 0 satisfying

I �
∑m

e=1se · L̂e � (1 + 8ε+O(ε2))I , (8.6)

while the sparsity of s —that is, |{e ∈ [m] : se > 0}|— is at most O(n/ε2).

Instead of maintaining one sequence Xk like in Section 8.4, we maintain two se-

quences Xk, Yk ∈ ∆n×n. At each iteration k ∈ 0, 1, . . . , T − 1, find an arbitrary

ek ∈ [m] such that

L̂ek •Xk ≤ L̂ek • Yk .

This is always possible by an averaging argument with weights we. Next, we choose

the `1/2 regularizer and some parameter α < 1/2 (in fact, we will choose α = ε later),

and updates

Xk+1 = arg min
Z∈∆n×n

{
VXk(Z) +

〈 −αL̂ek
(Xk • L̂ek)1/2

, Z
〉}

and

Yk+1 = arg min
Z∈∆n×n

{
VYk(Z) +

〈 αL̂ek
(Yk • L̂ek)1/2

, Z
〉}

. (8.7)

In other words, we have picked feedback matrices Fk =
−L̂ek

(Xk•L̂ek)1/2
for the Xk sequence

and Fk =
L̂ek

(Yk•L̂ek)1/2
for the Yk sequence in our MirrorDescent`1/2 .

4

Notice that X
1/2
k • −αL̂ek

(Xk•L̂ek)1/2
≥ −1

2
due to Claim 8.7, so we always have X

1/2
k •

αFk ≥ −1
2

which satisfies the prerequisite of Theorem 8.5. Applying Theorem 8.5 on

the Xk sequence, we obtain that for every UX ∈ ∆n×n,
T−1∑
k=0

〈 −L̂ek
(Xk • L̂ek)1/2

, Xk − UX
〉

≤ 2α ·
T−1∑
k=0

(Xk •
L̂ek

(Xk • L̂ek)1/2
)(X

1/2
k • L̂ek

(Xk • L̂ek)1/2
) +

VX0(UX)

α

4In fact, the denominator (Xk • L̂ek)1/2 is defined so as to make sure that Fk is the ‘maximally
aggressive’ loss matrix we can have for MirrorDescent`1/2 .

217

= 2α ·
T−1∑
k=0

X
1/2
k • L̂ek +

VX0(UX)

α
≤ 2α ·

T−1∑
k=0

(Xk • L̂ek)1/2 +
VX0(UX)

α
.

Above, the last inequality uses Claim 8.7. If we denote by MX
def
=
∑T−1

k=0

L̂ek
(L̂ek•Xk)1/2

and rearrange the inequality above, we get

MX • UX ≤
VX0(UX)

α
+ (1 + 2α)

T−1∑
k=0

(L̂ek •Xk)
1/2 . (8.8)

Similarly, applying Theorem 8.5 on the Yk sequence, and defineMY
def
=
∑T−1

k=0

L̂ek
(L̂ek•Yk)1/2

,

we obtain that for every UY ∈ ∆n×n,

MY • UY ≥ −
VY0(UY)

α
+ (1− 2α)

T−1∑
k=0

(L̂ek • Yk)1/2 . (8.9)

In the rest of the proof, we will use (8.8) and (8.9) to deduce

λmax(MY)− λmin(MY) ≤ 8ε(1 +O(ε))λmin(MY) . (8.10)

Finally, since MY =
∑T−1

k=0

L̂ek
(L̂ek•Yk)1/2

is a matrix that is a summation of at most

T = n/ε2 rank-1 matrices, dividing it by λmin(MY) gives the desired sparsification for

(8.6).

We prove (8.10) in two steps.

Lowerbounding λmin(MY). Recall that we have Tr(MX) =
∑T−1

k=0
1

(L̂e•Xk)1/2
be-

cause we have assumed each L̂e to be of trace 1. Denoting by ak = (L̂e •Xk)
1/2, we

have that Tr(MX) =
∑T−1

k=0
1
ak

. We apply (8.8) here with UX = 1
n
I = X0, and obtain

1

n

T−1∑
k=0

1

ak
=

1

n
Tr(MX) ≤ (1 + 2α)

T−1∑
k=0

(L̂e •Xk)
1/2 ≤ (1 + 2α)

T−1∑
k=0

ak .

Applying Cauchy-Schwarz, we have

(
T−1∑
k=0

ak)
2 ≥ 1

n(1 + 2α)
(
T−1∑
k=0

ak)(
T−1∑
k=0

1

ak
) ≥ T 2

n(1 + 2α)
. (8.11)

If we choose T = n
ε2

, we immediately have5∑T−1
k=0 (L̂e • Yk)1/2 ≥

∑T−1
k=0 ak ≥

√
n
ε2

(1−O(α)) .

Substituting the above lower bound into (8.9), and choosing UY ∈ ∆n×n to be the

rank-1 projection matrix over the smallest eigenvector of MY , and choosing α = ε,

5In fact, it suffices to stop our algorithm at the earliest iteration T so that inequality (8.11) is
satisfied. Our analysis here only represents the most pessimistic scenario; in practice, this early
termination implies we can choose less than n/ε2 matrices for certain inputs. This is in contrast to
[26], as their algorithm uses n/ε2 rank-1 matrices for all inputs.

218

we have

λmin(MY) ≥ −2
√
n

α
+ (1− 2α)

T−1∑
k=0

(L̂e • Yk)1/2 ≥ (1−O(ε))

√
n

ε2
(8.12)

Upperbounding λmax(MY)−λmin(MY). This time, we use our choice of L̂ek•Xk ≤
L̂ek • Yk to combine (8.8) and (8.9) and derive that

1

1 + 2α
MY • UX ≤

1

1 + 2α
MX • UX ≤

1

1− 2α
MY • UY +

2
√
n

α

(1

1 + 2α
+

1

1− 2α

)
.

Choosing UX to be the rank-1 matrix projection matrix over the largest eigenvector

of MY , UY to be that over the smallest eigenvector of MY , and recalling that α = ε,

we have

λmax(MY) ≤ 1 + 2ε

1− 2ε
λmin(MY) +

4
√
n

ε
(1 +O(ε)) .

After rearranging and substituting in the lower bound (8.12), we finish the proof of

(8.10)

λmax(MY)−λmin(MY) ≤ 4ε

1− 2ε
λmin(MY)+

4
√
n

ε
(1+O(ε)) ≤ 8ε(1+O(ε))λmin(MY) .

�

8.6 Efficient Implementation for

Graph Sparsification

The update rules described in (8.7) imply that Xk and Yk are of the form (see

Section 8.3)

Xk =
(
cX · I −

∑k−1
j=0s

X
j L̂ej

)−2

and Yk =
(∑k−1

j=0s
Y
j L̂ej − cY · I

)−2

. (8.13)

Here, cX is the unique (positive) constant that satisfies cXI −
∑k−1

j=0 s
X
j L̂ej � 0

and TrXk = 1, while cY is the unique (possibly negative) constant that satisfies∑k−1
j=0 s

Y
j L̂ej − cY I � 0 and TrYk = 1. The coefficients sXj and sYj are always positive.

(It is worth noting that cX is initially
√
n at X0 and keeps increasing, while cY is

initially −
√
n and keeps increasing as well.)

Recall that MirrorDescent`1/2 requires one to compute cX and cY for each iteartion,

and this can be done via binary search. One way to perform binary search is to first

compute λmax = λmax(
∑k−1

j=0 s
X
j L̂ej). Then, one can binary search cX in the range

[λmax +1, λmax +
√
n] to find the correct one satisfying Tr

(
cX · I−

∑k−1
j=0 s

X
j L̂ej

)−2
= 1.

Similarly, one can binary search cY in the range of [λmin −
√
n, λmin − 1] where

λmin = λmin(
∑k−1

j=0 s
Y
j L̂ej).

6

If one performs the binary search to an accuracy that is small enough, this gives

6λmax and λmin can be computed via power methods, and it suffices to compute them up to an
additive error of, say, 0.1. In Appendix 8.G, we propose an alternative approach to compute cX and
cY , avoiding the use of power methods.

219

an algorithm whose running time is Õ(n3m/ε2), dominated by the computation of

Xk • L̂e =
(
cX · I −

∑k−1
j=0 s

X
j L̂ej

)−2 • L̂e for each k ∈ [T] and e ∈ [m].

Running Time Improvement. For the graph sparsification problem described

in Theorem 8.1, we sketch the key ideas needed to improve the running time to

Õ
(
mn1+1/q/ε5

)
for any even integer q ≥ 2. The details can be found in Appendix 8.F

and 8.G. In particular, we first describe how to achieve a running time of Õ
(
mn1+1/2/ε5

)
.

Recall that in Section 8.5, we have constructed MX and MY and proved that

λmin(MX) and λmin(MY) are both at least Ω(
√
n/ε2). In fact, it is not hard to ensure

that λmax(MX) and λmax(MY) are at most O(
√
n/ε2) as well.7 Since

∑k−1
j=0 s

X
j L̂ej �

αMX , we conclude that the eigenvalues of
∑k−1

j=0 s
X
j L̂ej are all upper bounded by

α · O(
√
n/ε2) = O(

√
n/ε). Therefore, throughout the algorithm, the encountered

choices of cX are always upper bounded by O(
√
n/ε).

For this reason, we only need to compute matrix inversions of the form (cI−A)−1,

with the guarantee that c = O(
√
n/ε). Since we always have cI−A � I —as otherwise

Tr(cI − A)−2 is strictly larger than 1— we can approximate this matrix inverse by

(cI − A)−1 = c−1
(
I − A

c

)−1

≈ c−1
(
I +

A

c
+
A2

c2
+ · · · A

d

cd

)
, (8.14)

and it suffices to choose the maximum degree d = O(
√
n/ε). This is formally proved

in Lemma 8.21. In other words, when computing Xk, it suffices to replace the matrix

inversion with some matrix polynomial of degree d = O(
√
n/ε). Similar idea also

holds for the Yk sequence.

So far, we managed avoiding the computationally expensive matrix inversion.

Next, we want to further accelerate the procedure of computing (cI − A)−2 • L̂e for

all edges e ∈ [m] simultaneously. Recall that L̂e = vev
T
e is of rank 1, and one can

rewrite

(cI − A)−2 • L̂e = vTe (cI − A)−2ve = ‖(cI − A)−1ve‖2
2 .

For this reason, as in [151], one can apply the Johnson-Lindenstrauss dimension

reduction [86]: there exists random matrix Q with Õ(1/ε2) rows, satisfying that

‖(cI − A)−1ve‖2
2 ≈ ‖Q(cI − A)−1ve‖2

2 for for all ve.

Using this dimension reduction, one can precompute T = Q(cI − A)−1 in time

Õ(m/ε2) × Õ(
√
n/ε) = Õ(m

√
n/ε3), with the help from the approximate matrix

inversion (8.14), and the nearly-linear time Laplacian system solvers [152]. After the

precomputation, each (cI − A)−2 • L̂e ≈ ‖Tve‖2
2 can be computed in Õ(1/ε2) time,

totaling Õ(m/ε2) per iteration, which is negligible.

In sum, taking into account that we have T = n/ε2 iterations, the total running

time is Õ(mn1+1/2/ε5). To turn this Õ(mn1+1/2/ε5) into Õ(mn1+1/q/ε5) for any con-

stant q, we need to replace the use of the `1/2 regularizer with the `1−1/q regularizer.

This requires one to use Theorem 8.6 in replacement of Theorem 8.5.

7This may require one to stop the algorithm earlier than T = n/ε2 iterations, which is even
better!

220

We wish to emphasize here that our analysis in Section 8.5 needs to be strengthened

in order to tolerate all the errors incurred from the approximate computations (most

notably from Laplacian linear solvers, from Johnson-Lindenstrauss, and from (8.14)).

This is only rountinary thanks to the optimization motivation behind our argument,

and we have done this carefully in Appendix 8.F.

Acknowledgement

We thank Richard Peng, Nikhil Srivastava, and Nisheeth Vishnoi for helpful conver-

sations. This material is based upon work partly supported by the National Science

Foundation under Grant CCF-1319460 and by a Simons Graduate Student Award

under grant no. 284059.

Appendix

Appendix roadmap.

• In Figure 8-1, we plot the entropy and the `1/2 regularizers of the 3-dimensional

scalar case for a visual comparison.

• In Appendix 8.A, we verify the equivalence between FTRL and MirrorDescent

for our choices of the regularizers.

• In Appendix 8.B, we provide notations for graphs, and state the reduction from

the sparsifying graphs to sparsifying sums of rank-1 matrices.

• In Appendix 8.C, we provide our unweighted sparsification result.

• In Appendix 8.D and 8.E we provide missing proofs for Section 8.2 and 8.3

respectively.

• In Appendix 8.F, we generalize our sparsification algorithm of Section 8.5 to

allow arbitrary q ≥ 2, high rank matrices, and approximate computations.

• In Appendix 8.G, we provide the details of how to implement linear-sized graph

sparsifications in almost-quadratic time, thus finishing the running time claim

of Theorem 8.1.

• In Appendix 8.H, we sketch how to generalize our running time improvement

to other problems, including sparsifying sums of rank-1 PSD matrices (i.e.,

Theorem 8.14), as well as subgraph sparsifications.

221

(a) The entropy regularizer (b) The `1/2 regularizer

Figure 8-1: Two regularizers in n = 3. The first two axes represent x1, x2 so x3 =
1− x1 − x2. The third axes represent w(x).

8.A Partial Equivalence Between FTRL and Mir-

ror Descent
In this section, we show the equivalence between mirror descent and follow-the-

regularized-leader for our choices of the regularizers. In fact, this equivalence holds

more generally for all regularizers w(·) that are convex function of Legendre type with

domain Q (see for instance [22, 136]).

Letting Ai ∈ Rn be any symmetric matrix for each iteration i, the follow-the-

regularized-leader method can be described as

∀k = 0, 1, . . . , T − 1, Xk = arg min
Z∈∆n×n

{
w(Z) +

k−1∑
i=0

〈Ai, Z〉
}
. (8.15)

The mirror descent method (with starting point X̃0 = 1
n
I) can be described as

∀k = 0, 1, . . . , T − 1, X̃k = arg min
Z∈∆n×n

{
VX̃k−1

(Z) + 〈Ak−1, Z〉
}
, (8.16)

where as before, VX(Y)
def
= w(Y)−〈∇w(X), Y −X〉−w(X) is the Bregman divergence

of w(·).
Recall that when w(X) = X•(logX−I) is the entropy regularizer, then∇w(X) =

logX and therefore (∇w)−1(A) = eA. When w(X) = − q
q−1

TrX1−1/q is the `1−1/q

regularizer, then ∇w(X) = X−1/q and therefore (∇w)−1(A) = A−q. The rest of the

proof holds for both these two types of regularizers.

To compute the minimizer Xk for (8.15), one can take the derivative and demand

that ∇w(Xk) +
∑k−1

i=0 Ai − ck · I = 0. Here, the extra term −ck · I comes from the

Lagrange multipliers of the linear constraint Tr(Z) = I • Z = 1. (We do not have

Lagrange multipliers for the other constraint Z � 0 because our gradient ∇w(Z) is a

barrier function and tends to infinite as any eigenvalue of Z tends to zero.) It is now

easy to see that ck is the unique constant that ensures
∑k−1

i=0 Ai − ckI � 0 (because

∇w(Xk) � 0) and that TrXk = Tr
(
(∇w)−1(ckI −

∑k−1
i=0 Ai)

)
= 1.

To compute the minimizer Xk for (8.16), one can take the derivative and demand

222

that ∇w(X̃k) −∇w(X̃k−1) + Ai − dk · I = ∇VX̃k−1
(X̃k) + Ai − dk · I = 0. Here, the

extra term −dk · I again comes from the Lagrange multipliers of the linear constraint

Tr(Z) = I • Z = 1. It is now easy to see that dk is the unique constant that

ensures −∇w(X̃k−1) + Ai − dk · I � 0 (because ∇w(X̃k) � 0) and that TrX̃k =

Tr
(
(∇w)−1(∇w(X̃k−1) + dkI − Ak−1)

)
= 1.

To show the equivalence between (8.15) and (8.16), we perform a simple induction.

Suppose that X̃k−1 = Xk−1, and we wish to prove X̃k = Xk.

In this case, we have

X̃k = (∇w)−1
(
∇w(X̃k−1) + dkI − Ak−1

)
= (∇w)−1

(
∇w(Xk−1) + dkI − Ak−1

)
= (∇w)−1

(
ck−1I + dkI −

k−1∑
i=0

Ai

)
, and

Xk = (∇w)−1
(
ckI −

k−1∑
i=0

Ai

)
.

Finally, since dk is the unique constant that ensures ck−1I + dkI −
∑k−1

i=0 Ai � 0 and

Tr
(
(∇w)−1

(
ck−1I+dkI−

∑k−1
i=0 Ai

))
= 1, while ck is the unique constant that ensures

ckI −
∑k−1

i=0 Ai � 0 and Tr
(
(∇w)−1

(
ckI −

∑k−1
i=0 Ai

))
= 1, it is obvious to see that

ck = ck−1 + dk and therefore X̃k = Xk.

8.B Graph Notations

Let G = (V,E,w) be a undirected weighted graph with n vertices and m edges,

and each we > 0 is the weight of edge e. Without loss of generality, we study only

connected graphs throughout this paper. For every edge e = (a, b) ∈ E, we orient

it arbitrarily and denote by χe
def
= ea − eb ∈ Rn the characteristic (column) vector of

edge e.

Let Le
def
= weχeχ

T
e ∈ Rn×n be the graph Laplacian of edge e, or the edge Laplacian.

Let B ∈ Rm×n be the incidence matrix where its row corresponding to edge e is the

characteristic (row) vector χTe . Define W = diag{we}e∈E to be the diagonal matrix

of edge weights. The Laplacian with respect to graph G is LG
def
= BTWB ∈ Rn×n.

It is clear from the definition that LG � 0 is PSD and LG =
∑

e∈E Le. Notice that

ker(LG) = ker(W 1/2B) = span(1), and therefore xTLGx = 0 if and only if x is a

constant vector.

Since LG is symmetric, one can diagonalize it and write LG =
∑n−1

i=1 λiviv
T
i ,

where λi’s are the positive eigenvalues of LG and vi’s are the corresponding set

of orthogonal eigenvectors. The Moore-Penrose pseudoinverse of LG is denoted by

L†G
def
=
∑n−1

i=1 λ
−1
i viv

T
i . For notational convenience, we will stick to L−1

G to denote this

pseudoinverse, and often use L−2
G to denote (L†G)2, and L

−1/2
G to denote (L†G)1/2, and

so on. We remark here that LGL
−1
G = L−1

G LG =
∑

i viv
T
i = Iim(LG). Here, Iim(LG) is

the identity matrix on the image space of LG, which is just the space spanned by

223

all the vectors orthogonal to 1. For notational convenience, we will often abbreviate

Iim(LG) as I.

Throughout this paper, whenever related to graph sparsifications, we denote by

Ľe
def
= L

−1/2
G LeL

−1/2
G and L̂e

def
=
L
−1/2
G LeL

−1/2
G

L−1
G • Le

=
Ľe

L−1
G • Le

.

Above, Ľe is the normalized edge Laplacian, and L̂e is the normalized edge Laplacian

scaled by the effective resistance. (L−1
G • Le is the “effective resistance” of the edge

e, see for instance [151]). Both of them have rank 1, and it satisfies Tr(Ľe) ≤ 1 and

Ľe � I, while Tr(L̂e) = 1 and L̂e � I.

It is easy to check from the above definition that
∑

e Ľe = Iim(LG). In addition,

letting we = L−1
G • Le be the effective resistence of edge e, then

∑
eweL̂e = Iim(LG) as

well. Notice that
∑

ewe = TrIim(LG) = n− 1, the dimension of Iim(LG) (see [151]).

From Graph Sparsification to Rank-1 Decomposition Sparsification. As

originally shown in [26], one can easily translate the problem of graph spectral spar-

sification (see Theorem 8.1) into that of sparsifying sums of rank-1 matrices (see

Theorem 8.2). Indeed, because Iim(LG) =
∑

e∈[m] Ľe is a summation of rank-1 ma-

trices, if one can find scalars se ≥ 0 (as per Theorem 8.2) that satisfies Iim(LG) �∑
e∈[m] seĽe � (1 + ε)Iim(LG), this immediately implies, by the definition of Ľe, that

LG �
∑

e∈[m] seLe � (1 + ε)LG.

8.C Weak Unweighted Sparsifier
In this section, we consider the weak unweighted spectral sparsification problem very

recently studied by Anderson, Gu and Melgaard [8]: for any value κ ∈ [1,m/n],

find a κ-spectral sparsifier of G containing O(m/κ) distinct edges from E, without

reweighting. We show that our regret minimization framework allows us to design

a simple and almost-quadratic-time algorithm for this problem, improving from the

quartic time complexity of [8].

Formally, given any weighted undirected graph G = (V,E,w) with n vertices and

m edges, and any value κ ∈ [1,m/n], the task it to find a subset E0 ⊆ E containing

O(m/κ) distinct edges such that

1

κ
LG �

∑
e∈E0

Le � LG .

This is an unweighted sparsification problem because one is not allowed to reweight

the edges in E0, in contrast to Theorem 8.1; and we call it a weak sparsifier because

κ is usually large.

Similar to Appendix 8.B, one can easily reduce this graph sparsification problem to

sparsifying sums of rank-1 matrices. Givenm rank-1 PSD matrices Ľ1, . . . , Ľm ∈ Rn×n

that satisfies I =
∑

e∈[m] Ľe, and given some κ ∈ [1,m/n], find a subset E0 ⊆ [m]

with O(m/κ) distinct elements satisfying
∑

e∈E0
Ľe � 1

κ
I.

224

(In this section, one should feel free to coincide this Ľe with the ‘normalized edge

Laplacian’ introduced in Section 8.B; but L̂e needs not coincide with any graph Lapla-

cian in general.)

We solve this weak unweighted sparsification problem via the following reduction

to regret minimization.

If κ ≤ 9, we output E0 = E and are done. Otherwise, we choose the `1/2 regularizer

and parameter α = 4
√
nκ for MirrorDescent`1/2 . At each iteration k = 0, 1, . . . , T−1,

we define ek = e to be the index e ∈ [m] that maximizes the quantity Xk•Ľe
1+X

1/2
k •αĽe

among

all edges not chosen before —i.e., all edges in E \ {e0, e1, . . . , ek−1}. Next, we feed

Fk = Ľek as the feedback matrix to MirrorDescent`1/2 , and compute Xk+1 of the

next iteration.

Let us now state a simple property for the selected matrix Ľek using an averaging

argument:

Claim 8.8. For each k = 0, 1, . . . , T−1, we either have
∑k−1

j=0 Ľej �
1
κ
I or

Xk•Ľek
1+X

1/2
k •αĽek

≥
1

6m
.

Proof. Let us recall that by the definition of MirrorDescent`1/2 , we have

Xk =
(
α
k−1∑
j=0

Ľej − ckI
)−2

,

where ck > 0 is the unique constant that makes α
∑k−1

j=0 Ľej � ckI and TrXk = 1.

Note that if ck/α ≥ 1
κ

then we already have
∑k−1

j=0 Ľej �
ck
α
I � 1

κ
I. Therefore, we can

assume ck/α <
1
κ

for the rest of the proof.

One one hand, we have∑
e 6∈{e0,...,ek−1}

Xk • Ľe = Xk •
(
I −

k−1∑
j=0

Ľej

)
= Xk •

(
I − ck

α
I − X

−1/2
k

α

)
= (1− ck

α
)− TrX

1/2
k

α
> 1− 1

κ
−
√
n

α
>

5

6
, (8.17)

where the first inequality is due to TrX
1/2
k ≤

√
n and the second inequality is due to

our choice of α = 4
√
nκ and the fact that κ > 9.

On the other hand, we have∑
e 6∈{e0,...,ek−1}

1

6m

(
1 +X

1/2
k • αĽe

)
≤ 1

6
+

α

6m
X

1/2
k •

∑
e 6∈{e0,...,ek−1}

αĽe

≤ 1

6
+

α

6m
X

1/2
k • I ≤ 1

6
+
α
√
n

6m
=

1

6
+

4nκ

6m
≤ 5

6
, (8.18)

where the second inequality is because
∑

e 6∈{e0,...,ek−1} Ľe �
∑

e∈[m] Ľe = I, the third

inequality is because TrX
1/2
k ≤

√
n, and the fourth inequality is because κ ≤ m/n.

Combining (8.17) and (8.18), we conclude that there exists at least some index

225

e ∈ [m] \ {e0, . . . , ek−1} satisfying that Xk • Ľe ≥ 1
7m

(
1 + X

1/2
k • αĽe

)
, finishing the

proof of the claim. �

Now we are ready to apply Theorem 8.5, the regret bound, with our choice of Fk =

Ľek :

∀U ∈ ∆n×n,
T−1∑
k=0

〈Ľek , U〉 ≥
T−1∑
k=0

〈Ľek , Xk〉 − α
Tr(XkĽekX

1/2
k Ľek)

1 +X
1/2
k • αĽek

− 2
√
n

α

=
T−1∑
k=0

〈Ľek , Xk〉
(

1− X
1/2
k • αĽek

1 +X
1/2
k • αĽek

)
− 2
√
n

α

=
T−1∑
k=0

Ľek •Xk

1 +X
1/2
k • αĽek

− 2
√
n

α
. (8.19)

We will now choose T = 9m/κ. (Notice that T < m because κ > 9.) There are

two possibilities according to Claim 8.8.

In the first case, we have
∑k−1

j=0 Ľej �
1
κ
I for some k = 0, 1, . . . , T − 1 and we are

done: that is, defining E0
def
= {e0, e1, . . . , ek−1}, we have that |E0| ≤ T = O(m/κ) and

I �
∑

e∈E0
Ľe � 1

κ
I.

In the second case, we have
Xk•Ľek

1+X
1/2
k •αĽek

≥ 1
6m

for all k = 0, 1, . . . , T − 1. Substi-

tuting this into (8.19), and choosing U to be the rank 1 matrix corresponding to the

smallest eigenvalue of
∑T−1

k=0 Ľek , we conclude that

λmin

(T−1∑
k=0

Ľek

)
≥

T−1∑
k=0

1

6m
− 1

2κ
=

1

κ
.

Therefore, defining E0
def
= {e0, e1, . . . , eT−1}, we also have |E0| = T = O(m/κ) and

I �
∑

e∈E0
Ľe � 1

κ
I. In sum,

Theorem 8.9. Given a decomposition I =
∑

e∈[m] Ľe of rank-1 PSD matrices, and

given some κ ∈ [1,m/n], the above algorithm finds a subset E0 ⊆ [m] with O(m
κ

)

distinct elements satisfying I �
∑

e∈E0
Ľe � 1

κ
I.

We remark here that for graph sparsification, the above algorithm can be imple-

mented to run in time Õ(m3/2n), and can be improved to Õ(m1+1/qn) for any even

integer constant q ≥ 2 if the `1−1/q regularizer is used instead of `1/2. We ignore the

implementation details in this version of the paper because it is very similar to the

details discussed in Section 8.6.

8.D Proof of Lemma 8.3

We state some classical properties for Bregman divergence, which are classical and

can be found in for instance [40].

226

Lemma 8.3. The following properties hold for Bregman divergence.

• Non-negativity: VX(Y) ≥ 0 for all X, Y ≥ 0.

• The “three-point equality”: 〈∇w(X) − ∇w(Y), X − U〉 = VX(U) − VY (U) +

VY (X).

• Given X̃ � 0 and X = arg minZ∈∆n×n VX̃(Z) as the Bregman projection, we

have the “generalized Pythagorean theorem” for all U ∈ ∆: VX̃(U) ≥ VX(U) +

VX̃(X) ≥ VX(U).

Proof. The non-negativity follows by definition from the convexity of w(X). For every

U � 0, the “three-point equality” follows from the following inequality.

〈∇w(Y)−∇w(Y), Y − U〉
= (w(U)− w(Y)− 〈∇w(Y), U − Y 〉)− (w(U)− w(Y)− 〈w(Y), U − Y)〉)
− (w(Y)− w(Y)− 〈∇w(Y), Y − Y 〉)

= VY (U)− VY (U)− VY (Y) .

For the generalized Pythagorean theorem, we only need to prove VX̃(U) ≥ VX(U) +

VX̃(X) because the second inequality follows from the non-negativity of VX̃(X).

To provide the simplest proof, we only focus on the special case when w(X) =

− q
q−1

TrX1−1/q. (The proof for the entropy regularizer is similar, while the proof

for the most general Legendre function case is more involved.)

By definition,

VX(U) + VX̃(X) = X−1/q • U +
1

q − 1
TrX1−1/q − q

q − 1
TrU1−1/q

+ X̃−1/q •X +
1

q − 1
TrX̃1−1/q − q

q − 1
TrX1−1/q

VX̃(U) = X̃−1/q • U +
1

q − 1
TrX̃1−1/q − q

q − 1
TrU1−1/q .

Therefore,

VX̃(U)− (VX(U) + VX̃(X)) = X̃−1/q • U −X−1/q • U − X̃−1/q •X + TrX1−1/q

= (X̃−1/q −X−1/q) • (U −X) .

Since VX̃(U) is a convex function and X = arg minz∈∆ VX̃(z), for any U ∈ ∆n×n

we must have

〈∇VX̃(X), U −X〉 ≥ 0⇐⇒ 〈−X−1/q + X̃−1/q, U −X〉 ≥ 0 .

This concludes the proof of the lemma. �

227

8.E Missing Proofs in Section 8.3
Theorem 8.4. In MirrorDescentexp, if the parameter α > 0 satisfies αFk � −I for

all iterations k = 0, 1, . . . , T − 1, then, for every U ∈ ∆n×n,

R(U)
def
=

T−1∑
k=0

〈Fk, Xk − U〉 ≤ α
T−1∑
k=0

(
Xk • |Fk|

)
· ‖Fk‖spe +

VX0(U)

α
.

We note that VX0(U) ≤ log n.

Proof. We prove the theorem by using a two-step description of the mirror descent.

For every k ≥ 0, define X̃k+1
def
= arg minZ�0{VXk(Z) + α〈Fk, Z〉}, where the min-

imization is over all Z � 0, rather than Z ∈ ∆n×n. This minimizer X̃k+1 cer-

tainly exists (and equals to explogXk−αFk), and it is not hard to verify that Xk+1 =

arg minZ∈∆n×n{VX̃k+1
(Z)}. In other words, one can describe the update Xk → Xk+1

by adding an intermediate stage Xk → X̃k+1 → Xk+1. We also assume that initially

we have X̃0
def
= X0.

Noticing that the definition of X̃k+1 implies that ∇VXk(X̃k+1) + αFk = 0, which

by the definition of VX(Y) is equivalent to ∇w(Xk)−∇w(X̃k+1) = αFk. Therefore,

〈αFk, Xk − U〉 = 〈∇w(Xk)−∇w(X̃k+1), Xk − U〉 = VXk(U)− VX̃k+1
(U) + VX̃k+1

(Xk)

≤ VX̃k(U)− VX̃k+1
(U) + VX̃k+1

(Xk) .

(8.20)

Above, the second equality is due to the three-point equality and the only inequality is

due to the generalized Pythagorean theorem of Bregman divergence (see Lemma 8.3).

Now,

VX̃k+1
(Xk) = Xk • (logXk − log X̃k+1) + TrX̃k+1 − TrXk

= Xk • αFk + Tr
(
elogXk−αFk

)
− TrXk

¬

≤ Xk • αFk +Xk • e−αFk − TrXk

­

≤ Xk • αFk +Xk • (I − αFk + α2F 2
k)− TrXk = α2 ·Xk • F 2

k

®

≤ α2 · (Xk • |Fk|)‖Fk‖spe .
Above, ¬ is due to the Golden-Thompson inequality. ­ follows because e−αA �
I − αA+ α2A2, which can be proved after transforming into its eigenbasis, and then

using the fact that e−a ≤ 1−a+a2 for all a ≥ −1. ® follows because F 2
k � ‖Fk‖spe·|Fk|.

Finally, substituting the above upper bound into (8.20) and telescoping it for

k = 0, . . . , T − 1, we obtain
T−1∑
k=0

〈Fk, Xk − U〉 ≤
VX̃0

(U)− VX̃T (U)

α
+ α

T−1∑
k=0

(Xk • |Fk|)‖Fk‖spe .

The desired result of this theorem now follows from the above inequality and the

simple upper bound VX̃0
(U) = VX0(U) ≤ log n and the nonnegativity VX̃T (U) ≥

0. �

228

Theorem 8.5. In MirrorDescent`1/2, if the parameter α > 0, and the loss matrix Fk

is rank one and satisfies X
1/2
k • αFk > −1 for all k, then, for every U ∈ ∆n×n,

R(U)
def
=

T−1∑
k=0

〈Fk, Xk − U〉 ≤ α ·
T−1∑
k=0

(Xk • Fk)(X1/2
k • Fk)

1 +X
1/2
k • αFk

+
VX0(U)

α
.

If we instead have X
1/2
k • αFk ≥ −1

2
, the above bound can be simplified as

R(U)
def
=

T−1∑
k=0

〈Fk, Xk − U〉 ≤ 2α ·
T−1∑
k=0

(Xk • Fk)(X1/2
k • Fk) +

VX0(U)

α
.

We note that VX0(U) ≤ 2
√
n.

Proof. We prove the theorem by using a two-step description of the mirror descent.

For every k ≥ 0, define X̃k+1
def
= arg minZ�0{VXk(Z) + α〈Fk, Z〉}, where the mini-

mization is over all Z � 0, rather than Z ∈ ∆n×n. We claim that this minimizer

X̃k+1 exists and is strictly positive definite, because one can choose Z = X̃k+1 =

(X
−1/2
k + αFk)

−2 � 0 to make the gradient zero:

∇VXk
(
X̃k+1

)
+ αFk = ∇w(X̃k+1)−∇w(Xk) + αFk = −X̃−1/2

k+1 +X
−1/2
k + αFk = 0 .

(8.21)

This uses our assumption X
1/2
k • αFk > −1 which is equivalent to αFk � −X−1/2

k ,8

so as to ensure that X̃k+1 is well defined.

Next, it is easy to verify that Xk+1 = arg minZ∈∆n×n{VX̃k+1
(Z)}. In other words,

one can describe the update Xk → Xk+1 by adding an intermediate stage Xk →
X̃k+1 → Xk+1. We assume for notational simplicity that X̃0

def
= X0.

Using (8.21), we easily obtain that

〈αFk, Xk − U〉 = 〈∇w(Xk)−∇w(X̃k+1), Xk − U〉 = VXk(U)− VX̃k+1
(U) + VX̃k+1

(Xk)

≤ VX̃k(U)− VX̃k+1
(U) + VX̃k+1

(Xk) .

(8.22)

Above, the second equality is due to the three-point equality and the only inequality is

due to the generalized Pythagorean theorem of Bregman divergence (see Lemma 8.3).

We now exactly compute VX̃k+1
(Xk) in two cases.

• If αFk = −uuT is negative semidefinite, using the Sherman-Morrison formula,

TrX̃
1/2
k+1 = Tr

(
(X
−1/2
k − uuT)−1

)
= Tr

(
X

1/2
k +

X
1/2
k uuTX

1/2
k

1− uTX1/2
k u

)
.

Therefore,

VX̃k+1
(Xk) = X̃

−1/2
k+1 •Xk + TrX̃

1/2
k+1 − 2TrX

1/2
k

8This is because, if Fk = −uuT , then X
1/2
k •(−αuuT) > −1 is equivalent to αuTX

1/2
k u < 1, which

is further equivalent to αTrX
1/4
k uuTX

1/4
k < 1. However, since X

1/4
k uuTX

1/4
k is a rank-1 matrix,

this is finally equivalent to αuuT ≺ X−1/2
k .

229

= (X
−1/2
k − uuT) •Xk + TrX̃

1/2
k+1 − 2TrX

1/2
k

= −uuT •Xk +
(
TrX̃

1/2
k+1 − TrX

1/2
k

)
= −uTXku+

uTXku

1− uTX1/2
k u

=
uTXku · uTX1/2

k u

1− uTX1/2
k u

= α2 (Xk • Fk)(X1/2
k • Fk)

1 +X
1/2
k • αFk

.

• If αFk = uuT is positive semidefinite, using the Sherman-Morrison formula,

TrX̃
1/2
k+1 = Tr

(
(X
−1/2
k + uuT)−1

)
= Tr

(
X

1/2
k − X

1/2
k uuTX

1/2
k

1 + uTX
1/2
k u

)
.

Therefore,

VX̃k+1
(Xk) = X̃

−1/2
k+1 •Xk + TrX̃

1/2
k+1 − 2TrX

1/2
k

= (X
−1/2
k + uuT) •Xk + TrX̃

1/2
k+1 − 2TrX

1/2
k

= uuT •Xk +
(
TrX̃

1/2
k+1 − TrX

1/2
k

)
= uTXku+

uTXku

1 + uTX
1/2
k u

=
uTXku · uTX1/2

k u

1 + uTX
1/2
k u

= α2 (Xk • Fk)(X1/2
k • Fk)

1 +X
1/2
k • αFk

.

Finally, substituting the above computation of VX̃k+1
(Xk) into (8.22) and telescoping

it for k = 0, . . . , T − 1, we obtain
T−1∑
k=0

〈Fk, Xk − U〉 ≤
VX̃0

(U)− VX̃T (U)

α
+ α

T−1∑
k=0

(Xk • Fk)(X1/2
k • Fk)

1 +X
1/2
k • αFk

.

The desired result of this theorem now follows from the above inequality and the

simple upper bound VX̃0
(U) = VX0(U) ≤ 2

√
n and the nonnegativity VX̃T (U) ≥

0. �

The next theorem generalizes Theorem 8.5 to high rank loss matrices and `1−1/q-

regularizers with q ≥ 2. The key idea is to replace the use of the Sherman-Morrison

formula in the proof of Theorem 8.5 with the Woodbury formula so as to allow Fk to

be of high rank. It also uses the Lieb-Thirring trace inequality to handle arbitrary

q ≥ 2.

Theorem 8.6. In MirrorDescent`1−1/q
with q ≥ 2 and α > 0, if the loss matrix Fk

is either positive or negative semidefinite and satisfies αX
1/2q
k FkX

1/2q
k � − 1

2q
I for all

k, then,

∀U ∈ ∆n×n, R(U)
def
=

T−1∑
k=0

〈Fk, Xk−U〉 ≤ O(qα)
T−1∑
k=0

(Xk•|Fk|)·‖X1/2q
k FkX

1/2q
k ‖spe+

VX0(U)

α
.

We note that VX0(U) ≤ q
q−1

n1/q.

230

Proof. We prove the theorem by using a two-step description of the mirror descent.

For every k ≥ 0, define X̃k+1
def
= arg minZ�0{VXk(Z) + α〈Fk, Z〉}, where the mini-

mization is over all Z � 0, rather than Z ∈ ∆n×n. We claim that this minimizer

X̃k+1 exists and is strictly positive definite, because one can choose Z = X̃k+1 =

(X
−1/q
k + αFk)

−q � 0 to make the gradient zero:

∇VXk
(
X̃k+1

)
+ αFk = ∇w(X̃k+1)−∇w(Xk) + αFk = −X̃−1/q

k+1 +X
−1/q
k + αFk = 0 .

(8.23)

This uses our assumption αX
1/2q
k FkX

1/2q
k � − 1

2q
I which certainly implies αFk,i �

−1
2
X
−1/q
k , so as to ensure that X̃k+1 is well defined.

Next, it is easy to verify that Xk+1 = arg minZ∈∆{VX̃k+1
(Z)}. In other words, one

can describe the update Xk → Xk+1 by adding an intermediate stage Xk → X̃k+1 →
Xk+1. We assume for notational simplicity that X̃0

def
= X0.

Using (8.23), we easily obtain that

〈αFk, Xk − U〉 = 〈∇w(Xk)−∇w(X̃k+1), Xk − U〉 = VXk(U)− VX̃k+1
(U) + VX̃k+1

(Xk)

≤ VX̃k(U)− VX̃k+1
(U) + VX̃k+1

(Xk) .

(8.24)

Above, the second equality is due to the three-point equality and the only inequality is

due to the generalized Pythagorean theorem of Bregman divergence (see Lemma 8.3).

We now upper bound VX̃k+1
(Xk) in two cases: the case when αFk = −PP T � 0

and the case when αFk = PP T � 0. In both cases, we denote by β
def
= α‖X1/2q

k FkX
1/2q
k ‖spe =

‖X1/2q
k PP TX

1/2q
k ‖spe. Notice that this implies 9

X
1/2q
k PP TX

1/2q
k � βI and P TX

1/q
k P � βI . (8.25)

• If αFk = −PP T , we have X
−1/q
k � PP T and β ≤ 1

2q
by our assumption, so

using the Sherman-Morrison-Woodbury formula,

TrX̃
1−1/q
k+1 = Tr

(
(X
−1/q
k − PP T)−1

)q−1

= Tr
(
X

1/q
k +X

1/q
k P

(
I − P TX

1/q
k P

)−1
P TX

1/q
k

)q−1

≤ Tr
(
X

1/q
k +

X
1/q
k PP TX

1/q
k

1− β

)q−1

,

where the last inequality follows because (I − P TX
1/q
k P)−1 � 1

1−β I owing to

(8.25), as well as A � B =⇒ TrAn ≤ TrBn. We continue and write

TrX̃
1−1/q
k+1 ≤ Tr

(
X

1/q
k +

X
1/q
k PP TX

1/q
k

1− β

)q−1

= Tr
(
X

1/2q
k

(
I +

X
1/2q
k PP TX

1/2q
k

1− β
)
X

1/2q
k

)q−1

9The second inequality is because PTX
1/q
k P = (PTX

1/2q
k)(PTX

1/2q
k)T and has the same largest

eigenvalue as (PTX
1/2q
k)T (PTX

1/2q
k) = X

1/2q
k PPTX

1/2q
k .

231

≤ Tr
(
X

(q−1)/2q
k

(
I +

X
1/2q
k PP TX

1/2q
k

1− β
)q−1

X
(q−1)/2q
k

)
= Tr

(
X

1−1/q
k

(
I +

X
1/2q
k PP TX

1/2q
k

1− β
)q−1

)
,

where the inequality uses the Lieb-Thirring trace inequality (which relies on the

fact that q − 1 ≥ 1). Finally, denoting by D
def
=

X
1/2q
k PPTX

1/2q
k

1−β � β
1−β I (which

uses (8.25) again), we have(
I +D

)q−1 � I + (q − 1)D +O(q2β) ·D .

This matrix inequality can be proved by first turning into its eigenbasis, and

then verifying that (1+x)q−1 ≤ 1+(q−1)x+O(q2β)x for all x ∈ [0, β
1−β] (which

uses the fact that β ≤ 1/2q). Using this inequality, we conclude that

TrX̃
1−1/q
k+1 ≤ Tr

(
X

1−1/q
k

(
I +

X
1/2q
k PP TX

1/2q
k

1− β
)q−1

)
≤ Tr

(
X

1−1/q
k

(
I +

(
(q − 1) +O(q2β)

)X1/2q
k PP TX

1/2q
k

1− β

))
= TrX

1−1/q
k + (q − 1)(1 +O(qβ))Xk • PP T .

Therefore,

VX̃k+1
(Xk) = X̃

−1/q
k+1 •Xk +

1

q − 1
TrX̃

1−1/q
k+1 − q

q − 1
TrX

1−1/q
k

= (X
−1/q
k − PP T) •Xk +

1

q − 1
TrX̃

1−1/q
k+1 − q

q − 1
TrX

1−1/q
k

= −PP T •Xk +
1

q − 1

(
TrX̃

1−1/q
k+1 − TrX

1−1/q
k

)
= O(qβ) · PP T •Xk = O(qα2)(Xk • |Fk|) · ‖X1/2q

k FkX
1/2q
k ‖spe .

• If αFk = PP T , using the Sherman-Morrison-Woodbury formula,

TrX̃
1−1/q
k+1 = Tr

(
(X
−1/q
k + PP T)−1

)q−1

= Tr
(
X

1/q
k −X1/q

k P (I + P TX
1/q
k P)−1P TX

1/q
k

)q−1

≤ Tr
(
X

1/q
k − X

1/q
k PP TX

1/q
k

1 + β

)q−1

,

where the last inequality follows because (I + P TX
1/q
k P)−1 � 1

1+β
I owing to

(8.25), as well as A � B =⇒ TrAn ≤ TrBn. We continue and write

TrX̃
1−1/q
k+1 ≤ Tr

(
X

1/q
k − X

1/q
k PP TX

1/q
k

1 + β

)q−1

= Tr
(
X

1/2q
k

(
I − X

1/2q
k PP TX

1/2q
k

1 + β

)
X

1/2q
k

)q−1

232

≤ Tr
(
X

(q−1)/2q
k

(
I − X

1/2q
k PP TX

1/2q
k

1 + β

)q−1
X

(q−1)/2q
k

)
= Tr

(
X

1−1/q
k

(
I − X

1/2q
k PP TX

1/2q
k

1 + β

)q−1
)
,

where the inequality again uses the Lieb-Thirring trace inequality. Denoting by

D
def
=

X
1/2q
k PPTX

1/2q
k

1+β
� β

1+β
I (which uses (8.25) again), we see that(

I −D
)q−1 � I − (q − 1)D +O(q2β) ·D .

This matrix inequality can be proved by first turning into its eigenbasis, and

then verifying that (1 − x)q−1 ≤ 1 − (q − 1)x + O(q2β)x for all x ∈ [0, β
1+β

]

(which uses the fact that β ≤ 1/2q). This concludes that

TrX̃
1−1/q
k+1 ≤ Tr

(
X

1−1/q
k

(
I − X

1/2q
k PP TX

1/2q
k

1 + β

)q−1
)

≤ Tr
(
X

1−1/q
k

(
I − (q − 1)

(
1−O(qβ)

)X1/2q
k PP TX

1/2q
k

1 + β

))
= TrX

1−1/q
k − (q − 1)

(
1−O(qβ)

)
Xk • PP T .

Therefore,

VX̃k+1
(Xk) = X̃

−1/q
k+1 •Xk +

1

q − 1
TrX̃

1−1/q
k+1 − q

q − 1
TrX

1−1/q
k

= (X
−1/q
k + PP T) •Xk +

1

q − 1
TrX̃

1−1/q
k+1 − q

q − 1
TrX

1−1/q
k

= PP T •Xk +
1

q − 1

(
TrX̃

1−1/q
k+1 − TrX

1−1/q
k

)
= O(qβ) · PP T •Xk = O(qα2)(Xk • |Fk|) · ‖X1/2q

k FkX
1/2q
k ‖spe .

Finally, substituting the above upper bound on VX̃k+1
(Xk) into (8.24) and telescoping

it for k = 0, . . . , T − 1, we obtain
T−1∑
k=0

〈Fk, Xk − U〉 ≤
VX̃0

(U)− VX̃T (U)

α
+O(qα)

T−1∑
k=0

(Xk • |Fk|) · ‖X1/2q
k FkX

1/2q
k ‖spe .

The desired result of this theorem now follows from the above inequality and the

simple upper bound VX̃0
(U) = VX0(U) ≤ q

q−1
n1/q and the nonnegativity VX̃T (U) ≥

0. �

8.F Robust Linear-Sized Sparsification
In this section, we deduce the more generalized version of the same result presented

in Section 8.5, with the following major differences.

• Regularizer. In this section, we allow the general `1−1/q regularizer to be used,

for any even integer q ≥ 2, rather than just the `1/2 regularizer. (The assumption

233

on q being even integer rather than all reals no less than 2 is only for the sake of

proof convenience.)

• High rank. In this section, we allow L̂e to be possibly of high rank, rather than

just rank 1.

• Approximate computations. In this section, we allow many computations to

be approximate rather than exact. This will enable the algorithm to be more

efficiently implemented in the next section (Appendix 8.G). In particular, we allow

the following quantities to be approximately computed.

– We only need TrL̂e to be in [1− ε1, 1] rather than exactly one.

– We only need TrXk and TrYk to be in [1, 1 + ε1] rather than exactly one.

– We only need L̂e • Xk and L̂e • Yk to be computed only up to a (1 + ε1)

multiplicative error.

We will assume throughout this paper that ε1 < 1/2.

8.F.1 The Problem

Suppose we are given a decomposition of the identity matrix I =
∑m

e=1weL̂e, where

each L̂e satisfies ¬ 0 � L̂e � I, ­ TrL̂e ∈ [1− ε1, 1], and ® L̂e may be of high rank.

The weights we > 0 may be unknown.

In this section, we are interested in using the `1−1/q regularizer for MirrorDescent`1−1/q

in order to find scalars se ≥ 0 satisfying

I �
m∑
e=1

se · L̂e �
(

1 +

√
8q2

q − 1
· ε+O(ε1 + qε2 + ε1ε

√
q
))
I , (8.26)

while the sparsity of s —that is, |{e ∈ [m] : se > 0}|— is at most n/ε2. We will not

worry about the running time in this section, and defer all the implementation details

to Appendix 8.G.

Throughout this section, we pick w(X) to be the `1−1/q regularizer and VX(Y) to

be its induced Bregman divergence.

8.F.2 Our Algorithm

Maintain two sequences Xk, Yk � 0 satisfying TrXk,TrYk ∈ [1, 1 + ε1]. At the very

beginning we choose X0 = 1
n
I and Y0 = 1

n
I as before.

At each iteration k = 0, 1, . . . , T − 1, find an arbitrary ek such that

Dot(L̂ek , Xk) ≤ (1 + ε1)2Dot(L̂ek , Yk) ,

where Dot(L̂e, X) is some algorithm10 that approximately computes L̂e •X and sat-

10The implementation of this algorithm will be described in Appendix 8.G.

234

isfies

L̂e •X ≤ Dot(L̂e, X) ≤ (1 + ε1) · L̂e •X .

We can always do so because after averaging,∑
e

weDot(L̂e, Xk) ≤ (1 + ε1)
∑
e

(weL̂e) •Xk = (1 + ε1)TrXk

≤ (1 + ε1)2TrYk = (1 + ε1)2
∑
e

(weL̂e) • Yk ≤ (1 + ε1)2
∑
e

weDot(L̂e, Yk) .

At each iteration k = 0, 1, . . . , T − 1, we perform updates by finding11 arbitrary

δX , δY ≥ 0 satisfying

Y
−1/q
k +

αL̂ek
Dot(L̂ek , Yk)

1/q
− δY I � 0 and TrXk+1,TrYk+1 ∈ [1, 1 + ε1] ,

where

Xk+1
def
=
(
X
−1/q
k +

−αL̂ek
Dot(L̂ek , Xk)1/q

+ δXI
)−q

and

Yk+1
def
=
(
Y
−1/q
k +

αL̂ek
Dot(L̂ek , Yk)

1/q
− δY I

)−q
.

Above, α > 0 is some parameter that will be specified at the end of this section. Note

that this corresponds to performing updates

“ Xk+1 ← arg min
Z∈∆n×n

{
VXk(Z) +

〈 −αL̂ek
Dot(L̂ek , Xk)1/q

, Z
〉}

” and

“ Yk+1 ← arg min
Z∈∆n×n

{
VYk(Z) +

〈 αL̂ek
Dot(L̂ek , Yk)

1/q
, Z
〉}

”

however, we have not required TrXk+1 = TrYk+1 to be precisely equal to 1.

For analysis purpose only, we also define X̃k+1 and Ỹk+1 to be similar updates but

without δX or δY :

X̃k+1
def
=
(
X
−1/q
k +

−αL̂ek
Dot(L̂ek , Xk)1/q

)−q
and Ỹk+1

def
=
(
Y
−1/q
k +

αL̂ek
Dot(L̂ek , Yk)

1/q

)−q
.

We assume also X̃0
def
= X0.

Note that Ỹk+1 is always well defined. Claim 8.10 below shows that as long as

α < 1, it always satisfies X
−1/q
k +

−αL̂ek
Dot(L̂ek ,Xk)1/q

� 0, so X̃k+1 is also well defined.

Claim 8.10. For every e ∈ [m], we have X
−1/q
k � L̂e

(L̂e•Xk)1/q
� L̂e

Dot(L̂e,Xk)1/q
. In

addition, denoting by αL̂e
Dot(L̂e,Xk)1/q

= PP T , we have 0 � P TX
1/q
k P � αI.

Similarly, for every e ∈ [m], we have Y
−1/q
k � L̂e

(L̂e•Yk)1/q
� L̂e

Dot(L̂e,Yk)1/q
. In addition,

11The existence of such δX and δY shall become soon (due to Claim 8.10). The implementation
of these updates will be described in Appendix 8.G.

235

denoting by αL̂e
Dot(L̂e,Yk)1/q

= PP T , we have 0 � P TY
1/q
k P � αI.

Proof. We only prove the Xk part because the Yk part is similar. We first compute

‖X1/2q
k L̂eX

1/2q
k ‖qspe ≤ Tr((X

1/2q
k L̂eX

1/2q
k)q) ≤ Tr(X

1/2
k (L̂e)

qX
1/2
k) ,

where the last inequality follows from the Lieb-Thirring trace inequality.

Next, using the fact that L̂e � I, we obtain that (L̂e)
q � L̂e. Therefore,

‖X1/2q
k L̂eX

1/2q
k ‖qspe ≤ Tr(X

1/2
k L̂eX

1/2
k) = L̂e •Xk .

In other words, we have X
1/2q
k L̂eX

1/2q
k � (L̂e • Xk)

1/q · I which means X
−1/q
k �

L̂e
(L̂e•Xk)1/q

. We automatically have L̂e
(L̂e•Xk)1/q

� L̂e
Dot(L̂e,Xk)1/q

because Dot(L̂e, Xk) ≥
L̂e •Xk.

To prove the second half, beginning from X
−1/q
k � 1

α
· PP T , we left multi-

ply it with P TX
1/q
k and right multiply it with X

1/q
k P , and obtain P TX

1/q
k P �

1
α
· P TX

1/q
k PP TX

1/q
k P . Denoting by D

def
= P TX

1/q
k P , we have D � 1

α
D2, which

immediately implies 0 � D � αI as desired. �

We have now finished the description of the algorithm. We remark here that

TrX̃k+1 < TrXk and TrỸk+1 > TrYk. Therefore, since TrXk+1 increases as δX in-

creases, while TrYk+1 decreases as δY increase, we conclude the existence of δX , δY ≥ 0

so that TrXk+1,TrYk+1 ∈ [1, 1 + ε1].

8.F.3 Our Analysis

We begin by reproving essentially the first half of Theorem 8.5: that is, to prove

(8.22). We need to pay extra attention here since our TrXk and TrYk do not precisely

equal to 1.

Lemma 8.11. For every UX � 0 satisfying TrUX ≤ 1, and every UY � 0 satisfying

TrUY ≥ 1 + ε1,〈 −αL̂ek
Dot(L̂ek , Xk)1/q

, Xk − UX
〉
≤ VX̃k+1

(Xk) + VX̃k(UX)− VX̃k+1
(UX) , and

〈 αL̂ek
Dot(L̂ek , Yk)

1/q
, Yk − UY

〉
≤ VỸk+1

(Yk) + VỸk(UY)− VỸk+1
(UY) .

Proof. We first prove the Xk part. By our choice of the regularizer, we have

0 = ∇w(X̃k+1)−∇w(Xk) +
−αL̂ek

Dot(L̂ek , Xk)1/q
= −X̃−1/q

k+1 +X
−1/q
k +

−αL̂ek
Dot(L̂ek , Xk)1/q

.

Next, we obtain that

〈 −αL̂ek
Dot(L̂ek , Xk)1/q

, Xk − UX〉 = 〈∇w(Xk)−∇w(X̃k+1), Xk − UX〉

¬
= VXk(UX)− VX̃k+1

(UX) + VX̃k+1
(Xk)

236

­

≤ VX̃k(UX)− VX̃k+1
(UX) + VX̃k+1

(Xk) .

Above, ¬ is due to the three-point equality of Bregman divergence, and ­ comes

from

VXk(UX)− VX̃k(UX)
®
=
(
X
−1/q
k − X̃−1/q

k

)
• UX +

1

q − 1

(
TrX

1−1/q
k − TrX̃

1−1/q
k

)
¯
= δXTrUX +

1

q − 1

∑
i

1

λq−1
i

− 1

(λi − δX)q−1

°

≤ δXTrUX − δX
∑
i

1

λqi

±

≤ 0 .

Here, ® is owing to the definition of Bregman divergence. ¯ comes from the fact that

X̃
−1/q
k+1 = X

−1/q
k+1 − δXI, and the definition of choosing λi to be the i-th eigenvalue of

X
−1/q
k+1 . ° follows from the convexity of f(x) = x1−q which implies f(λi)−f(λi−δX) ≤
∇f(λi) · δX . ± is by our assumption of TrUX ≤ 1 as well as TrXk+1 =

∑
i

1
λqi
≥ 1.

Similarly, for the Yk part, we can compute

〈 αL̂ek
Dot(L̂ek , Yk)

1/q
, Yk − UY 〉 = 〈∇w(Yk)−∇w(Ỹk+1), Yk − UY 〉

¬
= VYk(UY)− VỸk+1

(UY) + VỸk+1
(Yk)

­

≤ VỸk(UY)− VỸk+1
(UY) + VỸk+1

(Yk) .

Above, ¬ is due to the three-point equality, and inequality ­ comes from

VYk(UY)− VỸk(UY)
®
=
(
Y
−1/q
k − Ỹ −1/q

k

)
• UY +

1

q − 1

(
TrY

1−1/q
k − TrỸ

1−1/q
k

)
¯
= −δY TrUY +

1

q − 1

∑
i

1

λq−1
i

− 1

(λi + δY)q−1

°

≤ −δY TrUY + δY
∑
i

1

λqi

±

≤ 0 .

Here, ® is owing to the definition of Bregman divergence. ¯ comes from the fact that

Ỹ
−1/q
k+1 = Y

−1/q
k+1 + δY I, and the definition of choosing λi to be the i-th eigenvalue of

Y
−1/q
k+1 . ° follows from the convexity of f(x) = x1−q which implies f(λi)−f(λi+δY) ≤
∇f(λi) ·(−δY). ± is by our assumption of TrUY ≥ 1+ε1 as well as TrYk+1 =

∑
i

1
λqi
≤

1 + ε1. �

In a next step, we reprove essentially the second half of Theorem 8.5: that is, to

provide upper bounds on VX̃k+1
(Xk) and VỸk+1

(Yk) in Lemma 8.12 and Lemma 8.13.

Lemma 8.12. As long as q ≥ 2 and α ≤ 1/2q, we have

VX̃k+1
(Xk) ≤

q

2
(α2 +O(qα3)) ·

(
L̂ek •Xk

)1−1/q
.

Proof. Suppose
αL̂ek

Dot(L̂ek ,Xk)1/q
= PP T . Then, using the Sherman-Morrison-Woodbury

237

formula,

TrX̃
1−1/q
k+1 = Tr

(
(X
−1/q
k − PP T)−1

)q−1
= Tr

(
X

1/q
k +X

1/q
k P (I − P TX

1/q
k P)−1P TX

1/q
k

)q−1

≤ Tr
(
X

1/q
k +

X
1/q
k PP TX

1/q
k

1− α

)q−1

,

where the last inequality follows because (I−P TX
1/q
k P)−1 � 1

1−αI owing to Claim 8.10,

as well as A � B =⇒ TrAn ≤ TrBn. We continue and write

TrX̃
1−1/q
k+1 ≤ Tr

(
X

1/q
k +

X
1/q
k PP TX

1/q
k

1− α

)q−1

= Tr
(
X

1/2q
k

(
I +

X
1/2q
k PP TX

1/2q
k

1− α
)
X

1/2q
k

)q−1

≤ Tr
(
X

(q−1)/2q
k

(
I +

X
1/2q
k PP TX

1/2q
k

1− α
)q−1

X
(q−1)/2q
k

)
= Tr

(
X

1−1/q
k

(
I +

X
1/2q
k PP TX

1/2q
k

1− α
)q−1

)
,

where the inequality uses the Lieb-Thirring trace inequality (which relies on the fact

that q − 1 ≥ 1). Finally, denoting by D
def
=

X
1/2q
k PPTX

1/2q
k

1−α � α
1−αI, we see that(

I +D
)q−1 � I + (q − 1)D +

((q − 1)(q − 2)

2
α +O(q3α2)

)
D .

This above matrix inequality can be proved by first turning into its eigenbasis, and

then verifying that (1+x)q−1 ≤ 1+(q−1)x+ (q−1)(q−2)
2

αx+O(q3α2)x for all x ∈ [0, α
1−α].

(This uses the fact that α ≤ 1/2q). Next, using the above matrix inequality, we

conclude that

TrX̃
1−1/q
k+1 ≤ Tr

(
X

1−1/q
k

(
I +

X
1/2q
k PP TX

1/2q
k

1− α
)q−1

)
≤ Tr

(
X

1−1/q
k

(
I +

(
(q − 1) +

(q − 1)(q − 2)

2
α +O(q3α2)

)X1/2q
k PP TX

1/2q
k

1− α

))
= TrX

1−1/q
k + (q − 1)

1 + q−2
2
α +O(q2α2)

1− α
Xk • PP T .

Therefore,

VX̃k+1
(Xk) = X̃

−1/q
k+1 •Xk +

1

q − 1
TrX̃

1−1/q
k+1 − q

q − 1
TrX

1−1/q
k

= (X
−1/q
k − PP T) •Xk +

1

q − 1
TrX̃

1−1/q
k+1 − q

q − 1
TrX

1−1/q
k

= −PP T •Xk +
1

q − 1

(
TrX̃

1−1/q
k+1 − TrX

1−1/q
k

)
≤ PP T •Xk

(
− 1 +

1 + q−2
2
α +O(q2α2)

1− α

)
=
q

2
(α +O(qα2)) · PP T •Xk

≤ q

2
(α2 +O(qα3)) ·

(
L̂ek •Xk

)1−1/q
. �

238

Lemma 8.13. As long as q ≥ 2 and α ≤ 1/2q, we have

VỸk+1
(Yk) ≤

q

2

(
α2 +O(α3)

)
·
(
L̂ek • Yk

)1−1/q
.

Proof. Suppose
αL̂ek

Dot(L̂ek ,Yk)1/q
= PP T . Then, using the Sherman-Morrison-Woodbury

formula,

TrỸ
1−1/q
k+1 = Tr

(
(Y
−1/q
k + PP T)−1

)q−1
= Tr

(
Y

1/q
k − Y 1/q

k P (I + P TY
1/q
k P)−1P TY

1/q
k

)q−1

≤ Tr
(
Y

1/q
k − Y

1/q
k PP TY

1/q
k

1 + α

)q−1

,

where the last inequality follows because (I+P TY
1/q
k P)−1 � 1

1+α
I owing to Claim 8.10,

as well as A � B =⇒ TrAn ≤ TrBn. We continue and write

TrỸ
1−1/q
k+1 ≤ Tr

(
Y

1/q
k − Y

1/q
k PP TY

1/q
k

1 + α

)q−1

= Tr
(
Y

1/2q
k

(
I − Y

1/2q
k PP TY

1/2q
k

1 + α

)
Y

1/2q
k

)q−1

≤ Tr
(
Y

(q−1)/2q
k

(
I − Y

1/2q
k PP TY

1/2q
k

1 + α

)q−1
Y

(q−1)/2q
k

)
= Tr

(
Y

1−1/q
k

(
I − Y

1/2q
k PP TY

1/2q
k

1 + α

)q−1
)
,

where the inequality again uses the Lieb-Thirring trace inequality (which relies on

the fact that q − 1 ≥ 1). Denoting by D
def
=

Y
1/2q
k PPTY

1/2q
k

1+α
� α

1+α
I, we see that(

I −D
)q−1 � I − (q − 1)D +

(q − 1)(q − 2)α

2(1 + α)
D .

This above matrix inequality can be proved by first turning into its eigenbasis, and

then verifying that (1−x)q−1 ≤ 1−(q−1)x+ (q−1)(q−2)
2

α
1+α

x for all x ∈ [0, α
1+α

]. (This

uses the fact that α ≤ 1/2q). Next, using the above matrix inequality, we conclude

that

TrỸ
1−1/q
k+1 ≤ Tr

(
Y

1−1/q
k

(
I − Y

1/2q
k PP TY

1/2q
k

1 + α

)q−1
)

≤ Tr
(
Y

1−1/q
k

(
I − (q − 1)

(
1− (q − 2)α

2(1 + α)

)Y 1/2q
k PP TY

1/2q
k

1 + α

))
= TrY

1−1/q
k − (q − 1)

(
1− (q − 2)α

2(1 + α)

) 1

1 + α
Yk • PP T .

Therefore,

VỸk+1
(Yk) = Ỹ

−1/q
k+1 • Yk +

1

q − 1
TrỸ

1−1/q
k+1 − q

q − 1
TrY

1−1/q
k

= (Y
−1/q
k + PP T) • Yk +

1

q − 1
TrỸ

1−1/q
k+1 − q

q − 1
TrY

1−1/q
k

= PP T • Yk +
1

q − 1

(
TrỸ

1−1/q
k+1 − TrY

1−1/q
k

)
239

≤ PP T • Yk
(

1−

(
1− (q−2)α

2(1+α)

)
1 + α

)
=
q

2

(
α +O(α2)

)
· PP T • Yk

≤ q

2

(
α2 +O(α3)

)
·
(
L̂ek • Yk

)1−1/q
. �

Theorem 8.14. Suppose ε < 1
4
√
q

and ε1 <
1
2
, and we choose α = ε

√
2√

q−1
and T = n

ε2
.

Then, the matrix MY
def
=
∑T−1

k=0

L̂ek
Dot(L̂ek ,Yk)1/q

satisfies that

λmax(MY)− λmin(MY) ≤ λmin(MY) ·
(√ 8q2

q − 1
· ε+O(ε1 + qε2

))
.

This theorem provides the sparsification guarantee to our Theorem 8.1 and 8.2. We

shall provide its running time guarantee in the next section.

Proof. Define matrices MX
def
=
∑T−1

k=0

L̂ek
Dot(L̂ek ,Xk)1/q

and MY
def
=
∑T−1

k=0

L̂ek
Dot(L̂ek ,Yk)1/q

.

Also, denote by ξ
def
= q

2
(α +O(qα2)).

We are now ready to rededuce (8.8) and (8.9) in Section 8.5.

Combining Lemma 8.11 and Lemma 8.12, and telescoping for k = 0, 1, . . . , T − 1,

we have

∀UX � 0 satisfying TrUX = 1, MX • UX ≤
VX̃0

(UX)

α
+ (1 + ξ)

T−1∑
k=0

(
L̂ek •Xk

)1−1/q

(8.27)

≤ qn1/q

(q − 1)α
+ (1 + ξ)

T−1∑
k=0

(L̂ek •Xk)
1−1/q .

(8.28)

Above, the second inequality uses the fact that VX̃0
(UX) ≤ q

q−1
n1/q.

Combining Lemma 8.11 and Lemma 8.13, and telescoping for k = 0, 1, . . . , T − 1,

we have

∀UY � 0,TrUY = 1 + ε1, MY • UY ≥ −
VỸ0(UY)

α
+ (1− ξ)

T−1∑
k=0

(L̂ek • Yk)1−1/q

≥ −q(1 + ε1)n1/q

(q − 1)α
+ (1− ξ)

T−1∑
k=0

(
L̂ek • Yk

)1−1/q
.

(8.29)

Above, the second inequality uses the fact that VỸ0(UY) ≤ q(1+ε1)
q−1

n1/q.

Similar to the proof in Section 8.5, we provide deduce our eigenvalue inequality

in two steps.

240

Lowerbounding λmin(MY). Since we have assumed each TrL̂e to be at least 1−ε1,

we have

Tr(MX) =
T−1∑
k=0

TrL̂ek
Dot(L̂ek , Xk)1/q

≥ 1− ε1

(1 + ε1)1/q

T−1∑
k=0

1

(L̂ek •Xk)1/q
.

Denoting by ak = L̂ek • Xk, we can write Tr(MX) ≥ 1−ε1
(1+ε1)1/q

∑T−1
k=0

1

a
1/q
k

. Applying

(8.27) with the choice of UX = 1
n
I = X0, we have

1− ε1

n(1 + ε1)1/q

T−1∑
k=0

1

a
1/q
k

≤ 1

n
TrMX = MX•UX ≤ (1+ξ)

T−1∑
k=0

(L̂ek•Xk)
1−1/q ≤ (1+ξ)

T−1∑
k=0

a
1−1/q
k .

Using the above inequality we obtain
T−1∑
k=0

a
1−1/q
k ≥ 1(

n(1 + ξ)(1 + ε1)1/q(1− ε1)−1
)1−1/q

(
T−1∑
k=0

a
1−1/q
k)1/q(

T−1∑
k=0

1

a
1/q
k

)1−1/q

≥ T

n1−1/q(1 + ξ)1−1/q(1 + ε1)1/q−1/q2(1− ε1)1/q−1
,

where the last inequality follows from Hölder’s inequality. If we choose T = n
ε2

, this

immediately gives
T−1∑
k=0

(L̂ek •Xk)
1−1/q =

T−1∑
k=0

a
1−1/q
k ≥ n1/q

ε2
(1−O(qα + ε1)) . (8.30)

Finally, substituting (8.30) into (8.29), and choosing UY so that MY • UY =

(1 + ε1)λmin(MY), we have

(1 + ε1)λmin(MY) ≥ −q(1 + ε1)n1/q

(q − 1)α
+ (1− ξ) 1

(1 + ε1)3−3/q

T−1∑
k=0

(L̂ek •Xk)
1−1/q

≥ − 2qn1/q

(q − 1)α
+ (1− ξ) 1

(1 + ε1)3−3/q

n1/q

ε2
(1−O(qα + ε1))

≥ − 2qn1/q

(q − 1)α
+
n1/q

ε2
(1−O(qα + ε1))

≥ n1/q

ε2
(1−O(qα + ε1 + ε2/α)) . (8.31)

Above, the first inequality is due to our choice of ek which satisfies

(1 + ε1)3L̂ek • Yk ≥ (1 + ε1)2Dot(L̂ek , Yk) ≥ Dot(L̂ek , Xk) ≥ L̂ek •Xk . (8.32)

Upper bounding λmax(MY)−λmin(MY). This time, combining (8.28) and (8.29),

as well as using (8.32), we compute that

1

1 + ξ

(
MY • UX −

qn1/q

(q − 1)α

)
≤ 1

1 + ξ

(
MX • UX −

qn1/q

(q − 1)α

)
≤ (1 + ε1)3−3/q

1− ξ
(
MY • UY +

q(1 + ε1)n1/q

(q − 1)α

)
.

241

Choosing UX so that MY • UX = λmax(MY), and UY so that MY • UY = (1 +

ε1)λmin(MY), we can rewrite the above inequality as

1

1 + ξ

(
λmax(MY)− qn1/q

(q − 1)α

)
≤ (1 + ε1)3−3/q

1− ξ
(1+ε1)

(
λmin(MY)+

qn1/q

(q − 1)α

)
. (8.33)

To turn this joint multiplicative-additive error into a purely multiplicative one, we

further rewrite it as

λmax(MY)− λmin(MY) ≤ 2ξ +O(ε1)

1− ξ
λmin(MY) +

1 + ξ +O(ε1)

1− ξ
qn1/q

(q − 1)α
+

qn1/q

(q − 1)α

=
2ξ +O(ε1)

1− ξ
λmin(MY) +

2q

q − 1

1 +O(ε1)

1− ξ
n1/q

α

≤ 2ξ +O(ε1)

1− ξ
λmin(MY) +

2q

q − 1
· λmin(MY)

ε2

α
(1 +O(qα + ε1 + ε2/α))

= λmin(MY) ·
(
qα +

2q

q − 1

ε2

α
+O(ε1 + qε2 + ε1ε

2/α + ε4/α2 + q2α2)
)
.

Above, the second inequality uses (8.31). Now, it is clear that by choosing α =
ε
√

2√
q−1
≤ 1

2q
, we have

λmax(MY)− λmin(MY) ≤ λmin(MY) ·
(√ 8q2

q − 1
· ε+O(ε1 + qε2 + ε1ε

√
q
))

≤ λmin(MY) ·
(√ 8q2

q − 1
· ε+O(ε1 + qε2

))
. �

8.F.4 An Additional Property

Recall that in the previous subsection, we have constructed MX and MY and proved

that λmin(MY) (and in fact λmin(MY) as well) is at least Ω(n1/q/ε2). In this subsection,

we shall show that λmax(MX) and λmax(MY) can be made at most O(n1/q/ε2) as well.

While this additional property is not needed for proving Theorem 8.14, it shall become

useful for proving the desired running time in the next section (see Appendix 8.G).

The following lemma ensures that if we stop the algorithm “whenever we are

done”, and thus choose possibly less than n/ε2 matrices, then, λmax(MX) and λmax(MY)

can be properly upper bounded.

Lemma 8.15. If one stops the algorithm either when T = n
ε2

iterations are performed,

or when the first time that
∑T−1

k=0 Dot(L̂ek , Xk)
1−1/q ≥ n1/q

ε2
is satisfied, then the same

result of Theorem 8.14 can be obtained, while we have an extra guarantee

λmax(MX), λmax(MY) ≤ O
(n1/q

ε2

)
.

Proof. Recall that in the proof of Theorem 8.14, we have only used the choice of

T = n
ε2

to deduce (8.30). For this reason, if instead of choosing exactly T = n
ε2

242

matrices, we

stop the algorithm at the first time T such that
T−1∑
k=0

Dot(L̂ek , Xk)
1−1/q ≥ n1/q

ε2
is satisfied,

then we automatically have
T−1∑
k=0

(L̂ek •Xk)
1−1/q ≥ n1/q

ε2
(1−O(ε1)) .

Replacing (8.30) with the above lower bound, all results claimed in Theorem 8.14

remain true.

In the rest of the proof, we will show that this early termination rule ensures a

good upper bound on λmax(MX) and λmax(MY). Indeed, at the time the algorithm is

terminated, we must have
T−1∑
k=0

(L̂ek •Xk)
1−1/q ≤

T−1∑
k=0

Dot(L̂ek , Xk)
1−1/q ≤ n1/q

ε2
+O(1) . (8.34)

This is because, since L̂ek •Xk ≤ I •Xk = 1 and thus Dot(L̂ek , Xk)
1−1/q ≤ O(1), the

value
∑T−1

k=0 Dot(L̂ek , Xk)
1−1/q is incremented by at most O(1) at each iteration. As a

consequence, at the first iteration it exceeds n1/q/ε2, the summation must be at least

n1/q/ε2 +O(1).

Next, substituting (8.34) into (8.28), and choosing UX so thatMX•UX = λmax(MX),

we have

λmax(MX) ≤ qn1/q

(q − 1)α
+ (1 + ξ)

n1/q

ε2
+O(1) = O

(n1/q

ε2

)
.

Finally, recalling that we have chosen Dot(L̂ek , Xk) ≤ (1 + ε1)2Dot(L̂ek , Yk), this

ensures that (1+ε1)2MX �MY . In sum, we obtain that λmax(MY) ≤ O(λmax(MX)) ≤
O
(
n1/q

ε2

)
. �

8.G Efficient Implementation for Graph Sparsifi-

cations

Recall from Appendix 8.F that in order to implement the algorithm described in

Theorem 8.14, we need to

(C1) Ensure that each TrL̂e is in [1− ε1, 1].

(C2) Compute at each iteration two reals cX , cY ∈ R satisfying that TrXk ∈ [1, 1+ε1]

and TrYk ∈ [1, 1 + ε1], where

Xk
def
=
(
cX · I −

k−1∑
j=0

αL̂ej

Dot(L̂ej , Xj)1/q

)−q
and Yk

def
=
(k−1∑
j=0

αL̂ej

Dot(L̂ej , Yj)
1/q
− cY · I

)−q
.

243

(C3) Compute at each iteration Dot(L̂e, Xk) and Dot(L̂e, Yk) which satisfy

L̂e•Xk ≤ Dot(L̂e, Xk) ≤ (1+ε1)L̂e•Xk and L̂e•Yk ≤ Dot(L̂e, Yk) ≤ (1+ε1)L̂e•Yk .

In this section, we suppose that we are dealing with a spectral graph sparsification

instance (see Appendix 8.B). In other words, we use I to denote Iim(LG), and have

L̂e =
L
−1/2
G LeL

−1/2
G

we
, where we = L−1

G • Le is the effective resistance of edge e ∈ [m].

Knowing this scaling factor we is somewhat important, because we need to ensure

that TrL̂e is between 1 − ε1 and 1 according to (C1). Fortunately, Spielman and

Srivastava [151] have given an algorithm that runs in nearly-linear time, and produces

the effective resistances L−1
G • Le up to a multiplicative error of 1 + ε1 for all edges

e ∈ [m], with probability at least 1− n−Ω(1).

In other words, we can denote by L̂e =
L
−1/2
G LeL

−1/2
G

we
, where each we only needs to

be between (1− ε1) · L−1
G • Le and L−1

G • Le.
We next wish to show how to implement (C2) and (C3) efficiently. Before that,

let us claim that

Lemma 8.16. Regardingless of how (C2) and (C3) are implemented, for all itera-

tions, cX , cY ≤ O(αn
1/q

ε2
) = O(n

1/q
√
qε

).

Proof. It is first easy to see that cY ≤ α ·λmax(MY) ≤ O(αn
1/q

ε2
) owing to Lemma 8.15.

Next, since TrXk ≥ 1, we must have

cX ≤ λmax

(k−1∑
j=0

αL̂ej

Dot(L̂ej , Xj)1/q

)
+ n1/q ≤ α · λmax(MX) + n1/q ≤ O(α

n1/q

ε2
) . �

Now, we are ready to prove the main theorem of this section.

Theorem 8.17. In an amortizeda running time of Õ(
√
qn1/qm/ε2

1ε) per iteration,

we can implement (C2) and (C3) with probability at least 1− n−Ω(1).

Combining this with the fact that there are at mots n
ε2

iterations, the total run-

ning time of our graph sparsification algorithm is

Õ
(√qn1+1/qm

ε2
1ε

3

)
.

aThis amortization can be removed, but will result in a slightly more involved implementation
to analyze.

Our proof below will make frequent uses of Lemma 8.18 and Lemma 8.19, two inde-

pendent lemmas regarding how to efficiently compute matrix inversions of the form

(cI −A)−q as well as (A− cI)−q. The statements and proofs of these two lemmas are

deferred to Appendix 8.G.1.

Proof. Both (C2) and (C3) are trivially implementable when k = 0, because X0 =

Y0 = 1
n
I.

244

Suppose that both of them are implementable at iteration k − 1. We proceed in

4 steps to prove that they are implementable at iteration k as well.

• Step I: prove (C3) for computing Dot(L̂e, Xk).

Suppose Xk is given in the form of Xk
def
=
(
cX · I −

∑k−1
j=0

αL̂ej

Dot(L̂ej ,Xj)
1/q

)−q
for

some cX > 0, and it satisfies TrXk ∈ [1, 1 + ε1]. (This is done by the inductive

assumption.)

Since TrXk ≤ 1 + ε1 ≤ 3/2, we must have

X
−1/q
k = cX · I −

k−1∑
j=0

αL̂ej

Dot(L̂ej , Xj)1/q
� 2

3
I .

This inequality ensures that we can compute Xk • L̂e approximately (up to

1 + ε1 error) using Lemma 8.18. Since cX is no more than O(n1/q/
√
qε) owing

to Lemma 8.16, the running time for computing Xk • L̂e for all edges e ∈ E is

Õ(cXqm/ε2
1) = Õ(

√
qn1/qm/ε2

1ε).

• Step II: prove (C3) for computing Dot(L̂e, Yk).

Suppose Yk is given in the form of Yk
def
=
(∑k−1

j=0

αL̂ej

Dot(L̂ej ,Yj)
1/q − cY · I

)−q
for

some real cY , and it satisfies TrYk ∈ [1, 1 + ε1]. (This is done by the inductive

assumption.) Since TrYk ≤ 1 + ε1 ≤ 3/2, we must have

Y
−1/q
k =

k−1∑
j=0

αL̂ej

Dot(L̂ej , Yj)
1/q
− cY · I � 2

3
I .

This inequality ensures that we can compute Yk • L̂e approximately (up to

1 + ε1 error) using Lemma 8.19. Since cY is no more than O(n1/q/
√
qε) owing

to Lemma 8.16, the running time for computing Yk • L̂e for all edges e ∈ E is

Õ(cY qm/ε2
1) = Õ(

√
qn1/qm/ε2

1ε).

• Step III: prove (C2) for Xk.

Suppose that Xk−1
def
=
(
bX · I −

∑k−2
j=0

αL̂ej

Dot(L̂ej ,Xj)
1/q

)−q
. Since TrXk−1 ≤ 1 + ε1 ≤

3/2, we must have

X
−1/q
k−1 = bX · I −

k−2∑
j=0

αL̂ej

Dot(L̂ej , Xj)1/q
� 2

3
I .

Recall that we have proved that X
−1/q
k−1 �

L̂ej

Dot(L̂ej ,Xj)
1/q (see Claim 8.10), com-

bining it with the inequality above and the fact that α < 1/4, we have

bX · I −
k−1∑
j=0

αL̂ej

Dot(L̂ej , Xj)1/q
� 1

2
I . (8.35)

245

Now, we are ready to perform a binary search to find cX . If one selects cX = bX ,

he will get TrXk ≥ TrXk−1 ≥ 1, and therefore cX = bX is a good lower bound

for the choice of cX . On the other hand, if one selects cX = bX + n1/q, he will

get TrXk ≤ Tr(n1/qI)−q = 1, so bX + n1/q is a good upper bound for the choice

of cX .

In sum, we can binary search cX in the interval of [bX , bX + n1/q]. For each

such value of cX in the process of the binary search, since cX is no more than

O(n1/q/
√
qε) as per Lemma 8.16, one can apply Lemma 8.18 and approximately

compute Tr(Xk) =
∑

eXk • L̂e up to a multiplicative error of 1 + ε1, in time

Õ(cXqm/ε2
1) = Õ(

√
qn1/qm/ε2

1ε).

Since the overhead for the binary search is Õ(1), the total running time to

compute cX at an iteration is Õ(
√
qn1/qm/ε2

1ε).

• Step IV: prove (C2) for Yk.

Suppose that Yk−1
def
=
(∑k−2

j=0

αL̂ej

Dot(L̂ej ,Yj)
1/q−bY ·I

)−q
. Since TrYk−1 ≤ 1+ε1 ≤ 3/2,

we must have

Y
−1/q
k−1 =

k−2∑
j=0

αL̂ej

Dot(L̂ej , Yj)
1/q
− bY · I � 2

3
I . (8.36)

It is clear from now that it suffices for us to search for cY ≥ bY , because if one

selects cY = bY , he will get TrYk ≤ TrYk−1 ≤ 1 + ε1, and therefore cY = bY

is a good lower bound. However, unlike Step III, one cannot perform a simple

binary search on cY because there is no good upper bound for cY .12

Instead, consider the following increment-and-binary-search algorithm. Begin-

ning from bY , we first choose cY = bY + 1
6
. This choice of cY ensures that,

according to (8.36),

Y
−1/q
k =

k−1∑
j=0

αL̂ej

Dot(L̂ej , Yj)
1/q
− cY · I � 1

2
I .

Therefore, we can compute Tr(Yk) =
∑

e Yk•L̂e approximately using Lemma 8.19.

If the approximation computation from Lemma 8.19 tells us that Tr(Yk) ≥ 1,

we stop the increment of cY . Otherwise, we conclude that Tr(Yk) is still less

than or equal to 1 + ε1, and continue to try cY = bT + i
6

for i = 2, 3, 4, We

stop this increment until we find some integer i so that Tr(Yk) ≥ 1.

12In fact, if one is allowed to compute the smallest eigenvalue of
∑k−1
j=0

αL̂ej

Dot(L̂ej
,Yj)1/q

, he can

perform a binary search as described in Section 8.6. However, we have chosen not to implement
that algorithm because the running time analysis for the max/min eigenvalue computation is only
longer than the current one.

246

At this moment, we have that

Tr
(k−1∑
j=0

αL̂ej

Dot(L̂ej , Yj)
1/q
− (bY +

i− 1

6
) · I

)−q
≤ 1 + ε1 and

Tr
(k−1∑
j=0

αL̂ej

Dot(L̂ej , Yj)
1/q
− (bY +

i

6
) · I

)−q
≥ 1 .

Therefore, we can perform a binary search for cY between bY + i−1
6

and bY + i
6

for, and in Õ(1) time we can find some value in this interval which satisfies

Tr(Yk) ∈ [1, 1 + ε1].

Again, since we always have cY ≤ O(n1/q/
√
qε) owing to Lemma 8.16, the bi-

nary search step costs a running time that is at most Õ(cY qm/ε2
1) = Õ(

√
qn1/qm/ε2

1ε)

owing to Lemma 8.19.

The incrementation procedure takes a running time Õ(
√
qn1/qm/ε2

1ε) for each

increment of 1
6
. However, throughout the algorithm, we increment cY by 1/6 at

most O(n1/q/
√
qε) times in total as per Lemma 8.16. This running time, after

amortization, is going to be dominated by that of the binary search.

Overall, we have shown that (C2) and (C3) can be implemented to run in Õ(
√
qn1/qm/ε2

1ε)

time (in amortization) per iteration. Since there are a total of at most n
ε2

iterations,

the desired running time is obtained. �

8.G.1 Missing Lemmas

In this subsection, we state and prove Lemma 8.18 and Lemma 8.19 for the efficient

computations of the matrix inverses needed for the previous subsection.

Lemma 8.18. Suppose that we are given positive reals c and s0, . . . , sk−1 satisfying

cI −
∑k−1

j=0 sjĽej �
1
2
I, where each Ľe is the normalized edge Laplacian and k =

O(m). Let q be any positive even integer. Then, we can compute a matrix T ∈
Rm′×m in time Õ(cqm/ε2

1), where T has m′ = Θ(log n/ε2
1) rows and satisfies that,

with probability at least 1− n−Ω(1),

∀e ∈ E, X•Ľe ≤ ‖Tχe‖2
2 ≤ (1+ε1)X•Ľe , where X

def
=
(
cI −

k−1∑
j=0

sjĽej

)−q
.

247

Lemma 8.19. Suppose we are given positive s0, . . . , sk−1 and a possibly negative

real c satisfying that
∑k−1

j=0 sjĽej − cI �
1
2
I, where each Ľe is the normalized edge

Laplacian and k = O(m). Let q be any positive even integer. Then, we can compute

a matrix T ∈ Rm′×m in time Õ(cqm/ε2
1), where T has m′ = Θ(log n/ε2

1) rows and

satisfies that, with probability at least 1− n−Ω(1),

∀e ∈ E, Y •Ľe ≤ ‖Tχe‖2
2 ≤ (1+ε1)Y •Ľe , where Y

def
=
(k−1∑
j=0

sjĽej − cI
)−q

.

Our proofs to the above lemmas rely on the following auxiliary tools.

Auxiliary Tools

The first one is the famous Laplacian linear system solver, written in the matrix

language.

Theorem 8.20. For parameter α ∈ [0, 1]. Given any Laplacian matrix L that cor-

responds to a graph with m edges, there exist an approximation L̄−1 which satisfies

that, with probability at least 1 − n−Ω(1), (1 − δ)L−1 � L̄−1 � (1 + δ)L−1, and for

every vector v ∈ Rn, L̄−1v can be computed in time Õ(m log(1/δ)).

Proof. The algorithms presented in [152] can be expressed as matrices L̄−1 which

satisfy that, with high probability, for every x ∈ Rn, the vectors L−1x and L̄−1 are

close under the so-called L-norm, or in symbols, ‖L̄−1x−L−1x‖2
L ≤ δ2‖L−1x‖2

L. After

expanding this out using the definition of the L-norm, we have

xT
(
L̄−1 − L−1

)
L
(
L̄−1 − L−1

)
x ≤ δ2 · xTL−1LL−1x

=⇒
(
L̄−1 − L−1

)
L
(
L̄−1 − L−1

)
� δ2 · L−1

=⇒ (L1/2L̄−1L1/2 − I)2 � δ2I

=⇒ −δI � L1/2L̄−1L1/2 − I � δI

=⇒ (1− δ)L−1 � L̄−1 � (1 + δ)L−1 .

The running time Õ(m log(1/δ)) follows from that of [152]. �

The next two lemmas are the classical results on approximating (I − A)−q and

(A− I)−q using Taylor expansions.

Lemma 8.21. The polynomial P(A) = I + A + · · · + Ad−1 satisfies that for all 0 �
A � (1− δ)I,

0 � (I − A)−1 − P(A) � (1− δ)d · (I − A)−1 .

As a consequence, for every integer q ≥ 1,

(1− q(1− δ)d) · (I − A)−q � Pq(A) � (I − A)−q .

248

Proof. We first note that for every x ∈ [0, 1− δ], we have

0 ≤ 1

1− x
− (1 + x+ · · ·+ xd−1) = xd + xd+1 + · · · = xd

1− x
≤ (1− δ)d

1− x
. (8.37)

As a consequence, we have that

0 � (I − A)−1 − (1 + A+ · · ·+ Ad−1) � (1− δ)d · (I − A)−1 ,

which can be proved by first assuming (without loss of generality) that A is diagonal,

and then analyzing each diagonal entry using (8.37).

To prove the result for (I − A)−q, we first notice that (I − A)−1 and P(A) are

commutable. Therefore, P(A) � (I −A)−1 directly implies Pq(A) � (I −A)−q, which

gives one side of the inequality. To see the other side, we rewrite

(1− (1− δ)d) · (I − A)−1 � P(A) ,

and then take the q-th power on both sides. This yields(
1− q(1− δ)d

)
· (I − A)−q � (1− (1− δ)d)q · (I − A)−q � Pq(A) ,

which finishes the proof of the lemma. �

Lemma 8.22. The polynomial P(A) = A+A2+· · ·+Ad satisfies that for all (1+δ)I �
A,

0 � (A− I)−1 − P(A−1) � (1 + δ)−d · (A− I)−1 .

As a consequence, for every integer q ≥ 1,

(1− q(1 + δ)−d) · (A− I)−q � Pq(A−1) � (A− I)−q .

Proof. We first note that for every x ≥ 1 + δ, we have

0 ≤ 1

x− 1
−(x−1+x−2+· · ·+x−d) = x−d−1+x−d−2+· · · = 1

xd
1

x− 1
≤ 1

(1 + δ)d
1

x− 1
.

(8.38)

As a consequence, we have that

0 � (A− I)−1 − (A−1 + A−2 + · · ·+ A−d) � (1 + δ)−d · (A− I)−1 ,

which can be proved by first assuming (without loss of generality) that A is diagonal,

and then analyzing each diagonal entry using (8.38).

To prove the result for (A − I)−q, we first notice that (A − I)−1 and P(A−1) are

commutable. Therefore, P(A−1) � (A − I)−1 directly implies Pq(A−1) � (A − I)−q,

which gives one side of the inequality. To see the other side, we rewrite

(1− (1 + δ)−d) · (A− I)−1 � P(A−1) ,

and then take the q-th power on both sides. This yields(
1− q(1 + δ)−d

)
· (A− I)−q � (1− (1 + δ)−d)q · (A− I)−q � Pq(A−1) ,

which finishes the proof of the lemma. �

249

Missing Proofs of Lemma 8.18 and 8.19

Lemma 8.18. Suppose that we are given positive reals c and s0, . . . , sk−1 satisfying

cI−
∑k−1

j=0 sjĽej �
1
2
I, where each Ľe is the normalized edge Laplacian and k = O(m).

Let q be any positive even integer. Then, we can compute a matrix T ∈ Rm′×m in time

Õ(cqm/ε2
1), where T has m′ = Θ(log n/ε2

1) rows and satisfies that, with probability at

least 1− n−Ω(1),

∀e ∈ E, X•Ľe ≤ ‖Tχe‖2
2 ≤ (1+ε1)X•Ľe , where X

def
=
(
cI −

k−1∑
j=0

sjĽej

)−q
.

Proof. Denoting by A = 1
c

∑k−1
j=0 sjĽej , we have 0 � A � (1− 1

2c
)I by the assumption.

Now we apply Lemma 8.21, and let P(A) be the matrix polynomial of degree d =

Θ(c log(q/ε1)) from Lemma 8.21. By the approximation guarantee, we have for every

edge e ∈ E,

X • Ľe =
(
cI −

k−1∑
j=0

sjĽej

)−q
• Ľe =

(
1± ε1

10

)
· c−q · Pq(A) • Ľe . (8.39)

Therefore, it suffices for us to compute Pq(A) • Ľe for each possible edge e.

Next, let L̄G
−1

be the approximation of L−1
G from Theorem 8.20 that satisfies

(1− ε1

10dq
)L−1

G � L̄G
−1 � (1 +

ε1

10dq
)L−1

G .

Denoting by Ls
def
=
∑k−1

j=0
sj
c
Lej , we have A = L

−1/2
G LsL

−1/2
G . Accordingly, for every

edge e ∈ E,

Pq(A) • Ľe = Tr
(
Pq
(
L
−1/2
G LsL

−1/2
G

)
L
−1/2
G LeL

−1/2
G

)
= Tr

(
Pq
(
L−1
G Ls

)
L−1
G Le

)
= Tr

(
Pq/2

(
L−1
G Ls

)
L−1
G Pq/2

(
LsL

−1
G

)
Le

)
= Tr

(
Pq/2

(
L−1
G Ls

)
L−1
G BTWBT L−1

G Pq/2
(
LsL

−1
G

)
Le

)
¬
= (1± ε1/10) · Tr

(
Pq/2

(
L̄G
−1
Ls
)
L̄G
−1
BTWBT L̄G

−1
Pq/2

(
LsL̄G

−1)
Le

)
= (1± ε1/10) · we · χTe Pq/2

(
L̄G
−1
Ls
)
L̄G
−1
BTWBT L̄G

−1
Pq/2

(
LsL̄G

−1)
χe

= (1± ε1/10) · we ·
∥∥∥W 1/2BT L̄G

−1
Pq/2

(
LsL̄G

−1)
χe

∥∥∥2

2
. (8.40)

Above, ¬ follows because each L̄G
−1

is a (1 ± ε1
10dq

) approximation to L−1
G , while

we have at most (d − 1)q + 2 ≤ dq copies of L−1
G in any sequence of the matrix

multiplication on the left hand side of ¬.

For this reason, we can preprocess by computing T ′
def
= QW 1/2BT L̄G

−1
Pq/2

(
LsL̄G

−1) ∈
Rm′×n, where Q ∈ Rm′×m is some Johnson-Lindenstrauss random matrix with m′ =

250

Θ(log n/ε2
1) rows. This matrix T ′ satisfies that, with probability at least 1−O(n−Ω(1)),

∀e ∈ E,
∥∥∥QW 1/2BT L̄G

−1
Pq/2

(
LsL̄G

−1)
χe

∥∥∥2

2
= (1± ε1/10)‖T ′χe‖2

2 . (8.41)

Combining (8.39), (8.40), and (8.41) together, we have

∀e ∈ E, X • Ľe = (1± ε1/3) · c−q · we · ‖T ′χe‖2
2 .

Defining T
def
=
(

1
1−ε1/3 · c

−q · we
)1/2 · T ′, we get the desired inequality in Lemma 8.18.

Finally, we emphasize that the above computation of T requires Õ(dq ·m′ ·m) =

Õ(cqm/ε2
1) time. This is because, each row of T can be computed by left multiplying

each row of Q with the matrix W 1/2BT L̄G
−1
Pq/2

(
LsL̄G

−1)
.13 The running time now

follows from (i) we need to compute vector-matrix multiplication O(dq) times, which

is the power of the polynomial Pq/2(·), and (ii) Theorem 8.20 implies that for inversion

vT L̄G
−1

can be computed in time Õ(m log(dq/ε1)) for any vector v. �

Lemma 8.19. Suppose we are given positive s0, . . . , sk−1 and a possibly negative real

c satisfying that
∑k−1

j=0 sjĽej−cI �
1
2
I, where each Ľe is the normalized edge Laplacian

and k = O(m). Let q be any positive even integer. Then, we can compute a matrix

T ∈ Rm′×m in time Õ(cqm/ε2
1), where T has m′ = Θ(log n/ε2

1) rows and satisfies that,

with probability at least 1− n−Ω(1),

∀e ∈ E, Y •Ľe ≤ ‖Tχe‖2
2 ≤ (1+ε1)Y •Ľe , where Y

def
=
(k−1∑
j=0

sjĽej − cI
)−q

.

Proof. There are two cases: c > 0 or c ≤ 0. We begin with the case when c > 0.

Denoting by A = 1
c

∑k−1
j=0 sjĽej , we have A � (1 + 1

2c
)I by the assumption.

Now we apply Lemma 8.22, and let P(A) be the matrix polynomial of degree d =

Θ(c log(q/ε1)) from Lemma 8.22. By the approximation guarantee, we have for every

edge e ∈ E,

Y • Ľe =
(k−1∑
j=0

sjĽej − cI
)−q
• Ľe =

(
1± ε1

10

)
· c−q · Pq(A−1) • Ľe . (8.42)

Therefore, it suffices for us to compute Pq(A−1) • Ľe for each possible edge e.

13This can be implemented as follows. For any row vector of Q, denote it by uT ∈ Rm. We first
sequentially compute
• vT ← uTW 1/2,
• vT ← vTBT , and

• vT ← vT L̄G
−1

.

Now, suppose Pq/2
(
LsL̄G

−1)
=
∑dq/2
i=0 ci

(
LsL̄G

−1)i
where each ci is the coefficient of the i-th power

term. We continue and compute
• wT ← ~0.
• For i← 0 to dq/2,

– wT ← wT + vT .
– vT ← vTLs.
– vT ← vT L̄G

−1
.

In the end, the value of the row vector wT is precisely the desired uTW 1/2BT L̄G
−1

Pq/2
(
LsL̄G

−1)
.

251

Denoting by Ls
def
=
∑k−1

j=0
sj
c
Lej , we have A−1 = L

1/2
G L−1

s L
1/2
G . Next, let L̄s

−1
and

L̄G
−1

respectively be the approximation of L−1
s and L−1

G from Theorem 8.20 that

satisfy

(1− ε1

10dq
)L−1

s � L̄s
−1 � (1 +

ε1

10dq
)L−1

s , and

(1− ε1

10dq
)L−1

G � L̄G
−1 � (1 +

ε1

10dq
)L−1

G .

Accordingly, for every edge e ∈ E,

Pq(A−1) • Ľe = Tr
(
Pq
(
L

1/2
G L−1

s L
1/2
G

)
L
−1/2
G LeL

−1/2
G

)
= Tr

(
Pq
(
L−1
s LG

)
L−1
G Le

)
= Tr

(
Pq/2

(
L−1
s LG

)
L−1
G Pq/2

(
LGL

−1
s

)
Le

)
= Tr

(
Pq/2

(
L−1
s LG

)
L−1
G BTWBT L−1

G Pq/2
(
LGL

−1
s

)
Le

)
¬
= (1± ε1/10) · Tr

(
Pq/2

(
L̄s
−1
LG
)
L̄G
−1
BTWBT L̄G

−1
Pq/2

(
LGL̄s

−1)
Le

)
= (1± ε1/10) · we · χTe Pq/2

(
L̄s
−1
LG
)
L̄G
−1
BTWBT L̄G

−1
Pq/2

(
LGL̄s

−1)
χe

= (1± ε1/10) · we ·
∥∥∥W 1/2BT L̄G

−1
Pq/2

(
LGL̄s

−1)
χe

∥∥∥2

2
(8.43)

Above, ¬ follows because each L̄s
−1

(resp. L̄G
−1

) is a (1 ± ε1
10dq

) approximation to

L−1
s (resp. L−1

G), while we have at most (d − 1)q + 2 ≤ dq copies of L−1
s and L−1

G in

any sequence of the matrix multiplication on the left hand side of ¬.

For this reason, we can preprocess by computing T ′
def
= QW 1/2BT L̄G

−1
Pq/2

(
LGL̄s

−1) ∈
Rm′×n, where Q ∈ Rm′×m is some Johnson-Lindenstrauss random matrix with m′ =

Θ(log n/ε2
1) rows. This matrix T ′ satisfies that, with probability at least 1−O(n−Ω(1)),

∀e ∈ E,
∥∥∥QW 1/2BT L̄G

−1
Pq/2

(
LGL̄s

−1)
χe

∥∥∥2

2
= (1± ε1/10)‖T ′χe‖2

2 . (8.44)

Combining (8.42), (8.43), and (8.44), we have

∀e ∈ E, Y • Ľe = (1± ε1/3) · c−q · we · ‖T ′χe‖2
2 .

Defining T
def
=
(

1
1−ε1/3 · c

−q · we
)1/2 · T ′, we get the desired inequality in Lemma 8.19.

Finally, we emphasize that the computation of T requires Õ(dq · m′ · m) =

Õ(dqm/ε2
1) time. This is because, each row of T can be computed by left multi-

plying each row of Q with the matrix W 1/2BT L̄G
−1
Pq/2

(
LGL̄s

−1)
.14 The running

time now follows from (i) we need to compute vector-matrix multiplication O(dq)

times, which is the power of the polynomial Pq/2(·), and (ii) Theorem 8.20 implies

the inversions vT L̄G
−1

and vT L̄s
−1

can both be computed in time Õ(m log(dq/ε1)),

for any vector v.

14This can be implemented in a similar manner as discussed in Footnote 13.

252

In the second case, if c ≤ 0, we can write

Y =
(k−1∑
j=0

sjĽej − cI
)−q

=
(
L
−1/2
G (Ls − cLG)L

−1/2
G

)−q
.

Therefore, denoting by L′s = Ls−cLG, which is another graph Laplacian matrix (with

positive edge weights), we can write

Y • Ľe = Tr
((
L
−1/2
G L′sL

−1/2
G

)−q
L
−1/2
G LeL

−1/2
G

)
= Tr

((
L′−1
s LG

)−q/2
L−1
G

(
LGL

′−1
s

)−q/2
Le

)
= we · χTe

(
L′−1
s LG

)−q/2
L−1
G BTWBL−1

G

(
LGL

′−1
s

)−q/2
χe

= we ·
∥∥W 1/2BL−1

G

(
LGL

′−1
s

)−q/2
χe
∥∥2

2
.

It is now clear that similar to the previous case, we can approximately compute

L′−1
s and L−1

G using Theorem 8.20, and apply the Johnson-Lindenstrauss dimension

reduction. We skip the detailed proofs here because it is only a repetition. �

8.H Efficient Implementation for Other Problems

As we have seen in Appendix 8.G, Lemma 8.18 and Lemma 8.19 are at the core of our

efficient implementation for the graph sparsification problem. For each other possible

sparsification problem, as long as these two lemmas can be properly revised, we can

also obtain fast running times. Let us illustrate how to obtain such running times for

two applications below.

Sparsifying sums of rank-1 matrices. To solve the problem in Theorem 8.2, it

is not hard to verify that Lemma 8.18 can be revised as follows:

Suppose that we are given positive reals c and s0, . . . , sk−1 satisfying cI−
∑k−1

j=0 sjL̂ej �
1
2
I, where each L̂ej = vejv

T
ej

is an explicit n × n rank-1 matrix and k = O(m). Let

q be any positive even integer. Then, we can compute a matrix T ∈ Rm′×n in time

Õ(cqn2/ε2
1), where T has m′ = Θ(log n/ε2

1) rows and satisfies that, with probability at

least 1− n−Ω(1),

∀e ∈ E, X•L̂e ≤ ‖Tve‖2
2 ≤ (1+ε1)X•L̂e , where X

def
=
(
cI −

k−1∑
j=0

sjL̂ej

)−q
.

The key idea for proving the above variant of Lemma 8.18 is to note that the

matrix inequality cI −
∑k−1

j=0 sjL̂ej �
1
2
I implies that the condition number for PSD

matrix M
def
= cI −

∑k−1
j=0 sjL̂ej is at most O(c). Therefore, one can use for instance

steepest descent (or even conjugate gradient or Chebyshev method) to compute M−1v

in time O(cn2) for every vector v ∈ Rn. Next, one can apply the similar Johnson-

Lindenstrauss dimension reduction as presented in the proof of Lemma 8.18.

A similar variant of Lemma 8.19 can be proved similarly.

253

In sum, each iteration of our Appendix 8.F is dominated by the computational

time need to (1) compute the matrix T ∈ Rm′×n, which takes time Õ(cqn2/ε2
1) =

Õ(
√
qn2+1/q/εε2

1), and (2) compute Tve for all e ∈ [m], which takes time O(mn/ε2
1).

Taking into account that we have T = n/ε2 such iterations, this is a total running

time of

O
(√qn3+1/q

ε2ε2
1

+
mn2

ε2
1ε

2

)
.

Subgraph sparsification. Given a weighted undirected graph G that can be de-

composed into edge-disjoint subgraphs, the goal of linear-sized subgraph sparsification

is to construct a (1 +O(ε))-spectral sparsifier G′ to G, so that G′ consists only of the

reweighted versions of at most n/ε2 given subgraphs.

In symbols, suppose that the edges of some weighted undirected graph G of n

vertices and m′ edges are decomposed into a disjoint union E =
⊎m
i=1Ei. We are

interested in finding scalars se ≥ 0 with |{e : se > 0}| ≤ O(n/ε2) such that, letting

L
def
=
∑m

e=1 se · LG[Ee], where LEe is the graph Laplacian matrix on the subgraph of G

induced by Ee, we have LG � L � (1 + ε)LG.

For this sparsification problem, for each e ∈ [m], we define L̂e =
L
−1/2
G LG[Ee]L

−1/2
G

we
to

be the normalized subgraph Laplacian scaled by we. Here, we is the scaling parameter

which ensures that TrL̂e is between 1− ε1 and 1. (It suffices to compute L−1
G •LG[Ee]

up to a multiplicative 1 + ε1 error, and then assign we ≈ L−1
G • LG[Ee].)

For this particular problem, we do not even need to revise Lemma 8.18 or Lemma 8.19.

Recall that we only need to compute ‘matrix inversions’ of the form(
cX · I −

k−1∑
j=0

αL̂ej

Dot(L̂ej , Xj)1/q

)−q
• L̂e ,

while each L̂ej is now —instead of a single (scaled) edge Laplacian matrix— the

summation of a few (scaled) edge Laplacian matrices. This remains to be the same

problem Lemma 8.18 is trying to implement. The total running time for this subgraph

sparsification is therefore

Õ
(√qn1+1/qm′

ε2
1ε

3

)
.

254

Bibliography

[1] Jacob Abernethy and Alexander Rakhlin. Beating the adaptive bandit with
high probability. In Proceedings of the 22nd Conference on Learning Theory -
COLT’ 09, pages 280–289, 2009. 214

[2] Jacob D. Abernethy, Elad Hazan, and Alexander Rakhlin. Interior-Point Meth-
ods for Full-Information and Bandit Online Learning. IEEE Transactions on
Information Theory, 58(7):4164–4175, July 2012. An earlier version of this
paper has appeared in COLT’08. 211, 212

[3] Dilip Abreu and Hitoshi Matsushima. Virtual implementation in iteratively
undominated strategies: Complete information. Econometrica, 60(5):993–1008,
1992. 44

[4] Zeyuan Allen-Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral Sparsification
and Regret Minimization Beyond Multiplicative Updates. In Proceedings of the
47th Annual ACM Symposium on Theory of Computing, STOC ’15, 2015. 163,
186, 191, 207

[5] Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unifica-
tion of gradient and mirror descent. ArXiv e-prints, abs/1407.1537, July 2014.
89, 116, 120, 126, 143, 147, 153, 155

[6] Zeyuan Allen-Zhu and Lorenzo Orecchia. Nearly-Linear Time Positive LP
Solver with Faster Convergence Rate. In Proceedings of the 47th Annual ACM
Symposium on Theory of Computing, STOC ’15, 2015. 89, 97, 118, 143, 185,
187, 198

[7] Zeyuan Allen-Zhu and Lorenzo Orecchia. Using optimization to break the ep-
silon barrier: A faster and simpler width-independent algorithm for solving
positive linear programs in parallel. In Proceedings of the 26th ACM-SIAM
Symposium on Discrete Algorithms, SODA ’15, 2015. 89, 97, 106, 115, 143,
145, 146, 147, 149, 150, 151, 157, 175, 185, 187, 188, 189, 190, 194, 195, 196,
198, 199, 202, 204, 205, 211, 212, 214

[8] David G. Anderson, Ming Gu, and Christopher Melgaard. An Efficient
Algorithm for Unweighted Spectral Graph Sparsification. ArXiv e-prints,
abs/1410.4273, October 2014. 212, 224

255

[9] Sanjeev Arora, Elad Hazan, and Satyen Kale. Fast Algorithms for Approx-
imate Semidefinite Programming using the Multiplicative Weights Update
Method. In 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’05), pages 339–348. IEEE, 2005. 90, 108, 187, 210, 212

[10] Sanjeev Arora, Elad Hazan, and Satyen Kale. The Multiplicative Weights
Update Method: a Meta-Algorithm and Applications. Theory of Computing,
8:121–164, 2012. 90, 94, 107, 108, 116, 117, 143, 144, 145, 149, 162, 163, 187,
209, 210, 211, 212

[11] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to
semidefinite programs. In Proceedings of the thirty-ninth annual ACM sympo-
sium on Theory of computing - STOC ’07, page 227, New York, New York,
USA, 2007. ACM Press. 186, 187, 188, 208, 210, 211, 212

[12] Arash Asadpour, Michel X. Goemans, Aleksander Madry, Shayan Oveis Gha-
ran, and Amin Saberi. An O(log n/ log log n)-approximation Algorithm for the
Asymmetric Traveling Salesman Problem. In Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms - SODA ’10, pages
379–389, 2010. 210

[13] Jean-Yves Audibert, Sébastien Bubeck, and Gábor Lugosi. Minimax policies
for combinatorial prediction games. Proceedings of COLT 2011, 2011. 212

[14] Robert J. Aumann. Utility theory without the completeness axiom. Economet-
rica, 30(3):445–462, July 1962. 17, 44

[15] Lawrence M. Ausubel and Paul Milgrom. The lovely but lonely vickrey auction.
In Peter Cramton, Yoav Shoham, and Richard Steinberg, editors, Combinatorial
Auctions, page Ch. 1. MIT Press, 2006. 18

[16] Baruch Awerbuch, Yossi Azar, and Rohit Khandekar. Fast load balancing via
bounded best response. In Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’08, pages 314–322, Philadelphia,
PA, USA, 2008. Society for Industrial and Applied Mathematics. 134

[17] Baruch Awerbuch and Rohit Khandekar. Stateless distributed gradient descent
for positive linear programs. Proceedings of the fourtieth annual ACM sympo-
sium on Theory of computing - STOC 08, page 691, 2008. 117, 118, 119, 120,
121, 122, 132, 133, 134, 135, 143, 145, 146, 187, 190

[18] Baruch Awerbuch and Rohit Khandekar. Stateless near optimal flow control
with poly-logarithmic convergence. In LATIN 2008: Theoretical Informatics,
pages 580–592. Springer, 2008. 134

[19] Baruch Awerbuch and Rohit Khandekar. Greedy distributed optimization of
multi-commodity flows. Distributed Computing, 21(5):317–329, 2009. 134

256

[20] Baruch Awerbuch, Rohit Khandekar, and Satish Rao. Distributed algorithms
for multicommodity flow problems via approximate steepest descent framework.
ACM Transactions on Algorithms, 9(1):1–14, December 2012. 116, 144

[21] Moshe Babaioff, Ron Lavi, and Elan Pavlov. Single-value combinatorial auc-
tions and implementation in undominated strategies. In SODA ’06: Proceed-
ings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1054–1063, New York, NY, USA, 2006. ACM. 17, 44

[22] Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, and Joydeep Ghosh.
Clustering with bregman divergences. The Journal of Machine Learning Re-
search, 6:1705–1749, 2005. 108, 222

[23] Nikhil Bansal, Uriel Feige, Robert Krauthgamer, Konstantin Makarychev,
Viswanath Nagarajan, Joseph (Seffi) Naor, and Roy Schwartz. Min-max Graph
Partitioning and Small Set Expansion. In 2011 IEEE 52nd Annual Symposium
on Foundations of Computer Science, pages 17–26. IEEE, October 2011. 210

[24] Yair Bartal, John W. Byers, and Danny Raz. Global optimization using local
information with applications to flow control. In Proceedings 38th Annual Sym-
posium on Foundations of Computer Science, pages 303–312. IEEE Comput.
Soc, 1997. 97, 116, 117, 118, 119, 143, 144, 145, 146, 187, 190

[25] Yair Bartal, John W. Byers, and Danny Raz. Fast, Distributed Approximation
Algorithms for Positive Linear Programming with Applications to Flow Control.
SIAM Journal on Computing, 33(6):1261–1279, January 2004. 97, 116, 117, 118,
133, 143, 144, 145, 146, 187, 190

[26] Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan
Sparsifiers. SIAM Review, 56(2):315–334, May 2014. 207, 208, 218, 224

[27] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Optimiza-
tion. Society for Industrial and Applied Mathematics, January 2013. 90, 91,
92, 94, 112, 120, 128, 147, 210

[28] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts
in Õ(n2) time. In Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing - STOC ’96, pages 47–55, New York, New York, USA,
1996. ACM Press. 207

[29] András A. Benczúr and David R. Karger. Randomized Approximation Schemes
for Cuts and Flows in Capacitated Graphs. Technical report, July 2002. 207

[30] Truman F. Bewley. Knightian decision theory. Part I. Decisions in Economics
and Finance, 25(2):79–110, 2002. Earlier version appeared as discussion paper
no. 807 of the Cowles Foundation at Yale University, November 1986. 15, 16,
44

257

[31] Rajendra Bhatia. Matrix Analysis, volume 169 of Graduate Texts in Mathe-
matics. Springer New York, New York, NY, 1997. 213

[32] D. Bienstock and G. Iyengar. Faster approximation algorithms for packing and
covering problems. Technical report, Columbia University, September 2004.
Preliminary version published in STOC ’04. 117, 143, 145, 187

[33] Aaron L. Bodoh-Creed. Ambiguous beliefs and mechanism design. Games and
Economic Behavior, 75(2):518–537, 2012. 17, 44

[34] Subir Bose, Emre Ozdenoren, and Andreas Pape. Optimal auctions with am-
biguity. Theoretical Economics, 1(4):411–438, December 2006. 17, 44

[35] Subir Bose and Ludovic Renou. Mechanism design with ambiguous communi-
cation devices. Econometrica, 82(5):1853–1872, 2014. 17

[36] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations and trends in machine
learning, 5(1):1–122, 2012. 212

[37] Dave Buchfuhrer, Shaddin Dughmi, Hu Fu, Robert Kleinberg, Elchanan Mossel,
Christos Papadimitriou, Michael Schapira, Yaron Singer, and Chris Umans.
Inapproximability for vcg-based combinatorial auctions. In Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’10, pages 518–536, 2010. 39

[38] John Byers and Gabriel Nasser. Utility-based decision-making in wireless sensor
networks. In Mobile and Ad Hoc Networking and Computing, 2000. MobiHOC.
2000 First Annual Workshop on, pages 143–144. IEEE, 2000. 116, 144

[39] Marcel K. de Carli Silva, Nicholas J. A. Harvey, and Cristiane M. Sato. Sparse
Sums of Positive Semidefinite Matrices. Technical report, July 2011. 207, 208,
212

[40] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cam-
bridge University Press, Cambridge, 2006. 168, 210, 226

[41] Moses Charikar, Tom Leighton, Shi Li, and Ankur Moitra. Vertex sparsifiers and
abstract rounding algorithms. In 51th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada,
USA, pages 265–274, 2010. 207

[42] Alessandro Chiesa, Silvio Micali, and Zeyuan Allen Zhu. Mechanism design with
approximate valuations. In Proceedings of the 3rd Innovations in Theoretical
Computer Science conference, ITCS ’12, 2012. 45

[43] Alessandro Chiesa, Silvio Micali, and Zeyuan Allen Zhu. Knightian Self Un-
certainty in the VCG Mechanism for Unrestricted Combinatorial Auctions. In
Proceedings of the Fifteenth ACM Conference on Economics and Computation,
EC ’14, 2014. 39

258

[44] Alessandro Chiesa, Silvio Micali, and Zeyuan Allen Zhu. Knightian analysis of
the Vickrey mechanism. Econometrica, 2015. To appear. 15

[45] C. G. Chorus, T. A. Arentze, and H. J. P. Timmermans. Spatial choice: a
matter of utility or regret? Environment and Planning B: Planning and Design,
36(3):538–551, 2009. 45, 82

[46] Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman,
and Shang-Hua Teng. Electrical flows, laplacian systems, and faster approxima-
tion of maximum flow in undirected graphs. In Proceedings of the 43rd annual
ACM symposium on Theory of computing - STOC ’11, page 273, New York,
New York, USA, October 2011. ACM Press. 90, 210

[47] Fabián A. Chudak and Vânia Eleutério. Improved Approximation Schemes for
Linear Programming Relaxations of Combinatorial Optimization Problems. In
Proceedings of the 11th International IPCO Conference on Integer Programming
and Combinatorial Optimization, pages 81–96, 2005. 143, 145, 187

[48] Vincent Conitzer and Tuomas Sandholm. Complexity of (iterated) dominance.
In Proceedings of the 6th ACM conference on Electronic commerce, EC ’05,
pages 88–97, New York, NY, USA, 2005. ACM. 86

[49] Eric Danan. Randomization vs. selection: How to choose in the absence of
preference? Management Science, 56:503–518, March 2010. 17, 44

[50] Partha S. Dasgupta, Peter J. Hammond, and Eric S. Maskin. The implemen-
tation of social choice rules: Some general results on incentive compatibility.
Review of Economic Studies, 46(2):185–216, April 1979. 26

[51] Constantinos Daskalakis, Alan Deckelbaum, and Anthony Kim. Near-optimal
no-regret algorithms for zero-sum games. In Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms - SODA ’11, pages
235–254, 2011. 210

[52] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal dis-
tributed online prediction using mini-batches. The Journal of Machine Learning
Research, 13(1):165–202, 2012. 94

[53] Alfredo Di Tillio, Nenad Kos, and Matthias Messner. The design of ambiguous
mechanisms. Technical report, 2012. 17

[54] Ran Duan and Seth Pettie. Linear-Time Approximation for Maximum Weight
Matching. Journal of the ACM, 61(1):1–23, January 2014. 146

[55] Juan Dubra, Fabio Maccheroni, and Efe A. Ok. Expected utility theory without
the completeness axiom. Journal of Economic Theory, 115(1):118–133, March
2004. 17, 44

259

[56] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Ambuj Tewari. Composite
Objective Mirror Descent. In Proceedings of the 23rd Annual Conference on
Learning Theory - COLT ’10, number 1, 2010. 92

[57] Shaddin Dughmi and Jan Vondrák. Limitations of randomized mechanisms for
combinatorial auctions. In Foundations of Computer Science (FOCS), 2011
IEEE 52nd Annual Symposium on, pages 502–511. IEEE, 2011. 39

[58] Richard Engelbrecht-Wiggans. The effect of regret on optimal bidding in auc-
tions. Management Science, 35(6):685–692, 1989. 45, 85

[59] Richard Engelbrecht-Wiggans and Elena Katok. Regret in auctions: Theory
and evidence. Economic Theory, 33(1):81–101, 2007. 45, 82

[60] Uriel Feige and Moshe Tennenholtz. Mechanism design with uncertain inputs:
(to err is human, to forgive divine). In Proceedings of the 43rd Annual ACM
Symposium on Theory of Computing, STOC ’11, pages 549–558, New York,
NY, USA, 2011. ACM. 44

[61] Olivier Fercoq and Peter Richtárik. Accelerated, Parallel and Proximal Coor-
dinate Descent. ArXiv e-prints, abs/1312.5799:25, December 2013. 107, 147,
153, 167

[62] Emel Filiz and Erkut Y Ozbay. Auctions with anticipated regret: Theory and
experiment. The American Economic Review, 97(4):1407–1418, 2007. 45, 82

[63] Lisa K. Fleischer. Approximating Fractional Multicommodity Flow Indepen-
dent of the Number of Commodities. SIAM Journal on Discrete Mathematics,
13(4):505–520, January 2000. 116, 144

[64] Vincy Fon and Yoshihiko Otani. Classical welfare theorems with non-transitive
and non-complete preferences. Journal of Economic Theory, 20(3):409–418,
June 1979. 17, 44

[65] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-
line learning and an application to boosting. In Computational learning theory,
pages 23–37. Springer, 1995. 90, 107, 108, 212

[66] Drew Fudenberg and Jean Tirole. Game theory. 1991. MIT Press, 1991. 22, 47

[67] D. Gale and A. Mas-Colell. An equilibrium existence theorem for a general
model without ordered preferences. Journal of Mathematical Economics, 2(1):9–
15, March 1975. 17, 44

[68] Naveen Garg and Jochen Könemann. Faster and Simpler Algorithms for Mul-
ticommodity Flow and Other Fractional Packing Problems. SIAM Journal on
Computing, 37(2):630–652, January 2007. 116, 119, 144, 210

260

[69] Allan Gibbard. Manipulation of voting schemes: a general result. Econometrica:
journal of the Econometric Society, pages 587–601, 1973. 26

[70] Itzhak Gilboa and David Schmeidler. Maxmin expected utility with non-unique
prior. Journal of Mathematical Economics, 18(2):141–153, April 1989. 16, 17,
24, 44

[71] Joseph Y. Halpern and Rafael Pass. Iterated regret minimization: A new solu-
tion concept. Games and Economic Behavior, 74(1):184–207, January 2012. A
preliminary version appeared in IJCAI’09. 45, 85, 86

[72] Elad Hazan. The convex optimization approach to regret minimization. In
Optimization for machine learning, chapter 10, pages 287–304. MIT press, 2012.
209, 210

[73] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for
online convex optimization. Machine Learning, 69(2-3):169–192, August 2007.
105

[74] Elad Hazan, Satyen Kale, and Shai Shalev-Shwartz. Near-optimal algorithms
for online matrix prediction. In Proceedings of the 25th Annual Conference on
Learning Theory - COLT ’12, pages 38.1—-38.13, 2012. 212, 214

[75] David A Hensher, William H Greene, and Caspar G Chorus. Random regret
minimization or random utility maximization: an exploratory analysis in the
context of automobile fuel choice. Journal of Advanced Transportation, 2011.
45, 82

[76] Nathanael Hyafil and Craig Boutilier. Regret Minimizing Equilibria and Mech-
anisms for Games with Strict Type Uncertainty. In Proceedings of the 20th
conference on Uncertainty in artificial intelligence, pages 268–277, July 2004.
45, 83, 86

[77] Garud Iyengar, David J. Phillips, and Cliff Stein. Feasible and accurate algo-
rithms for covering semidefinite programs. In SWAT, pages 150–162, 2010. 186,
187

[78] Garud Iyengar, David J. Phillips, and Clifford Stein. Approximating semidef-
inite packing programs. SIAM Journal on Optimization, 21(1):231–268, 2011.
186, 187

[79] Matthew O. Jackson. Implementation in undominated strategies: A look at
bounded mechanisms. Review of Economic Studies, 59(4):757–75, October 1992.
17, 22, 44, 47, 83, 85

[80] Matthew O. Jackson, Thomas Palfrey, and Sanjay Srivastava. Undominated
Nash implementation in bounded mechanisms. Games and Economic Behavior,
6(3):474–501, 1994. 17, 44

261

[81] Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. QIP =
PSPACE. Journal of the ACM (JACM), 58(6):30, 2011. 186, 187, 211

[82] Rahul Jain, Sarvagya Upadhyay, and John Watrous. Two-message quantum
interactive proofs are in pspace. In 2009 50th Annual IEEE Symposium on
Foundations of Computer Science, pages 534–543. IEEE, 2009. 186, 187

[83] Rahul Jain and John Watrous. Parallel approximation of non-interactive zero-
sum quantum games. In Computational Complexity, 2009. CCC’09. 24th An-
nual IEEE Conference on, pages 243–253. IEEE, 2009. 186, 187

[84] Rahul Jain and Penghui Yao. A Parallel Approximation Algorithm for Positive
Semidefinite Programming. 2011 IEEE 52nd Annual Symposium on Founda-
tions of Computer Science, pages 463–471, October 2011. 185, 187, 188

[85] Rahul Jain and Penghui Yao. A parallel approximation algorithm for mixed
packing and covering semidefinite programs. ArXiv e-prints, abs/1201.6090,
January 2012. 185, 187, 188, 190, 195

[86] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz map-
pings into a Hilbert space. Contemporary Mathematics, 26:189–206, 1984. 220

[87] Anatoli Juditsky. Convex optimization ii: Algorithms. Lecture notes, November
2013. 89, 95, 97

[88] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford.
An Almost-Linear-Time Algorithm for Approximate Max Flow in Undirected
Graphs, and its Multicommodity Generalizations. In Proceedings of the 25th
Annual ACM-SIAM Symposium on Discrete Algorithms - SODA ’14, number 1
in STOC ’14, April 2014. 90, 91, 92, 107, 207

[89] Philip Klein and Hsueh-I Lu. Efficient approximation algorithms for semidefi-
nite programs arising from max cut and coloring. In Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing, pages 338–347. ACM,
1996. 186

[90] Philip Klein and Neal Young. On the number of iterations for dantzig-wolfe opti-
mization and packing-covering approximation algorithms. In Gérard Cornuéjols,
Rainer E. Burkard, and Gerhard J. Woeginger, editors, Integer Programming
and Combinatorial Optimization, volume 1610 of Lecture Notes in Computer
Science, pages 320–327. Springer Berlin Heidelberg, 1999. 146

[91] Frank H. Knight. Risk, Uncertainty and Profit. Houghton Mifflin, 1921. 15, 44

[92] Christos Koufogiannakis and Neal E. Young. A Nearly Linear-Time PTAS for
Explicit Fractional Packing and Covering Linear Programs. Algorithmica, pages
494–506, March 2013. Previously appeared in FOCS ’07. 118, 143, 145, 146,
187

262

[93] Guanghui Lan. An optimal method for stochastic composite optimization.
Mathematical Programming, 133(1-2):365–397, January 2011. 95

[94] Yin Tat Lee, Satish Rao, and Nikhil Srivastava. A new approach to computing
maximum flows using electrical flows. In Proceedings of the 45th annual ACM
symposium on Symposium on theory of computing - STOC ’13, page 755, New
York, New York, USA, 2013. ACM Press. 90, 95

[95] Kevin Leyton-Brown and Yoav Shoham. Essentials of game theory: A concise
multidisciplinary introduction. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 2(1):1–88, 2008. 22, 47

[96] Elliott H. Lieb. Convex trace functions and the wigner-yanase-dyson conjecture.
Advances in Mathematics, 11(3):267–288, 1973. 213

[97] Elliott H. Lieb and Walter E. Thirring. Inequalities for the Moments of the
Eigenvalues of the Schrödinger Hamiltonian and Their Relation to Sobolev In-
equalities. Studies in Mathematical Physics, pages 269–303, 1976. 191

[98] Peter B Linhart and Roy Radner. Minimax-regret strategies for bargaining over
several variables. Journal of Economic Theory, 48(1):152–178, 1989. 45, 85

[99] Giuseppe Lopomo, Luca Rigotti, and Chris Shannon. Uncertainty in mechanism
design. Technical report, 2009. 17, 37, 44

[100] Giuseppe Lopomo, Luca Rigotti, and Chris Shannon. Knightian uncertainty
and moral hazard. Journal of Economic Theory, 146(3):1148 – 1172, 2011.
Incompleteness and Uncertainty in Economics. 17

[101] Michael Luby and Noam Nisan. A parallel approximation algorithm for positive
linear programming. In Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing - STOC ’93, pages 448–457, New York, New York,
USA, 1993. ACM Press. 97, 115, 116, 117, 118, 119, 133, 143, 144, 145, 146,
186, 187, 188

[102] Fabio Maccheroni, Massimo Marinacci, and Aldo Rustichini. Ambiguity aver-
sion, robustness, and the variational representation of preferences. Economet-
rica, 74(6):1447–1498, 2006. 17

[103] Aleksander Madry. Faster approximation schemes for fractional multicommod-
ity flow problems via dynamic graph algorithms. In Proceedings of the 42nd
ACM symposium on Theory of computing - STOC ’10, page 121, New York,
New York, USA, 2010. ACM Press. 116, 144

[104] Aleksander Madry. Navigating Central Path with Electrical Flows: From Flows
to Matchings, and Back. In 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science, pages 253–262. IEEE, October 2013. 90

263

[105] Andrew Mas-Colell. An equilibrium existence theorem without complete or
transitive preferences. Journal of Mathematical Economics, 1(3):237–246, De-
cember 1974. 17, 44

[106] H. Brendan McMahan. A Unified View of Regularized Dual Averaging and Mir-
ror Descent with Implicit Updates. arXiv preprint arXiv:1009.3240, September
2011. Previously appeared in AISTATS 2011 as a conference paper entitled
“Follow-the-regularized-leader and mirror descent: Equivalence theorems and
l1 regularization”. 93

[107] H. Brendan McMahan and Matthew Streeter. Adaptive Bound Optimization
for Online Convex Optimization. In Proceedings of the 23rd Annual Conference
on Learning Theory - COLT ’10, February 2010. 93

[108] Paul Milgrom. Auctions and bidding: A primer. Journal of Economic Perspec-
tives, 3(3):3–22, Summer 1989. 44

[109] John W. Milnor. Games against nature. In Robert M Thrall, Clyde Hamilton
Coombs, and Robert L Davis, editors, Decision processes. John Wiley & Sons,
Inc., 1954. 45, 82

[110] Roger B. Myerson. Incentive compatibility and the bargaining problem. Econo-
metrica: journal of the Econometric Society, pages 61–73, 1979. 26

[111] Assaf Naor. Sparse quadratic forms and their geometric applications [after
Batson, Spielman and Srivastava]. Astérisque, 2012. 209

[112] Leandro Nascimento. Remarks on the consumer problem under incomplete
preferences. Theory and Decision, 70(1):95–110, January 2011. 17, 44

[113] Arkadi Nemirovski. Prox-Method with Rate of Convergence O(1/t) for Varia-
tional Inequalities with Lipschitz Continuous Monotone Operators and Smooth
Convex-Concave Saddle Point Problems. SIAM Journal on Optimization,
15(1):229–251, January 2004. 117, 143, 145, 149, 187

[114] Arkadi Nemirovsky and David Yudin. Problem complexity and method efficiency
in optimization. Nauka Publishers, Moscow (in Russian), 1978. John Wiley,
New York (in English) 1983. 92, 93

[115] Yu Nesterov. Rounding of convex sets and efficient gradient methods for linear
programming problems. Optimisation Methods and Software, 23(1):109–128,
2008. 143, 145, 187

[116] Yurii Nesterov. A method of solving a convex programming problem with con-
vergence rate O(1/k2). In Doklady AN SSSR (translated as Soviet Mathematics
Doklady), volume 269, pages 543–547, 1983. 89, 95, 102, 107, 147

264

[117] Yurii Nesterov. Introductory Lectures on Convex Programming Volume: A Basic
course, volume I. Kluwer Academic Publishers, 2004. 89, 91, 92, 95, 97, 98,
102, 104, 105, 107, 111, 120, 147

[118] Yurii Nesterov. Smooth minimization of non-smooth functions. Mathematical
Programming, 103(1):127–152, December 2005. 89, 92, 95, 96, 102, 103, 104,
106, 107, 116, 117, 120, 143, 144, 145, 147, 149, 153, 187

[119] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Math-
ematical Programming, 120(1):221–259, June 2007. 92, 93

[120] Yurii Nesterov. Accelerating the cubic regularization of newton’s method on
convex problems. Mathematical Programming, 112(1):159–181, 2008. 95

[121] Yurii Nesterov. Gradient methods for minimizing composite functions. Mathe-
matical Programming, 140(1):125–161, 2013. 95

[122] Yurii Nesterov. Universal gradient methods for convex optimization problems.
Mathematical Programming, May 2014. 95

[123] Brendan O’Donoghue and Emmanuel Candès. Adaptive Restart for Accelerated
Gradient Schemes. Foundations of Computational Mathematics, July 2013. 95,
105, 106

[124] Efe A. Ok. Utility representation of an incomplete preference relation. Journal
of Economic Theory, 104:429–449, 2002. 17, 44

[125] Lorenzo Orecchia. Fast Approximation Algorithms for Graph Partitioning using
Spectral and Semidefinite-Programming Techniques. PhD thesis, EECS Depart-
ment, University of California, Berkeley, May 2011. 186, 208

[126] Lorenzo Orecchia, Sushant Sachdeva, and Nisheeth K. Vishnoi. Approximating
the exponential, the lanczos method and an Õ(m)-time spectral algorithm for
balanced separator. In STOC ’12. ACM Press, November 2012. 90, 108, 186,
210, 211, 212

[127] Richard Peng. Private communication, April 2015. 187, 190

[128] Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD linear
systems. In Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pages 333–342, 2014. 207

[129] Richard Peng and Kanat Tangwongsan. Faster and simpler width-independent
parallel algorithms for positive semidefinite programming. In Proceedinbgs of the
24th ACM symposium on Parallelism in algorithms and architectures - SPAA
’12, page 101, New York, New York, USA, January 2012. ACM Press. 185, 186,
187, 188, 190, 193, 195

265

[130] Richard Peng and Kanat Tangwongsan. Faster and simpler width-independent
parallel algorithms for positive semidefinite programming. ArXiv e-prints,
abs/1201.5135v2, August 2014. http://arxiv.org/abs/1201.5135v2. 187,
190

[131] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast Approximation
Algorithms for Fractional Packing and Covering Problems. Mathematics of
Operations Research, 20(2):257–301, May 1995. 90, 108, 116, 117, 135, 143,
144, 145, 187, 212

[132] Ryan Porter, Amir Ronen, Yoav Shoham, and Moshe Tennenholtz. Fault tol-
erant mechanism design. Artificial Intelligence, 172:1783–1799, October 2008.
44

[133] Alexander Rakhlin. Lecture notes on online learning. Draft, 2009. Avail-
able at http://www-stat.wharton.upenn.edu/~rakhlin/courses/stat991/
papers/lecture_notes.pdf. 214

[134] Ludovic Renou and Karl H. Schlag. Minimax regret and strategic uncertainty.
Journal of Economic Theory, 145(1):264–286, January 2010. 45, 83, 86

[135] Luca Rigotti and Chris Shannon. Uncertainty and risk in financial markets.
Econometrica, 73(1):203–243, 01 2005. 17, 44

[136] R. Tyrrell Rockafellar. Convex Analysis (Princeton Landmarks in Mathematics
and Physics). Princeton University Press, 1996. 108, 222

[137] Tuomas Sandholm. Issues in computational vickrey auctions. International
Journal of Electronic Commerce, 4:107–129, March 2000. 44

[138] Leonard J Savage. The theory of statistical decision. Journal of the American
Statistical association, 46(253):55–67, 1951. 45, 82

[139] David Schmeidler. Subjective probability and expected utility without additiv-
ity. Econometrica, 57(3):571–87, May 1989. 17, 44

[140] Reinhard Selten. Blame avoidance as motivating force in the first price sealed
bid private value auction. In Economics Essays in Honor of Werner Hilden-
brand, pages 333–344. Springer, 1989. 45, 85

[141] Wayne Shafer and Hugo Sonnenschein. Equilibrium in abstract economies with-
out ordered preferences. Journal of Mathematical Economics, 2(3):345–348,
December 1975. 17, 44

[142] Shai Shalev-Shwartz. Online learning: Theory, algorithms, and applications.
PhD thesis, Hebrew University, 2007. 210

[143] Shai Shalev-Shwartz. Online Learning and Online Convex Optimization. Foun-
dations and Trends in Machine Learning, 4(2):107–194, 2011. 99, 109, 214

266

http://arxiv.org/abs/1201.5135v2
http://www-stat.wharton.upenn.edu/~rakhlin/courses/stat991/papers/lecture_notes.pdf
http://www-stat.wharton.upenn.edu/~rakhlin/courses/stat991/papers/lecture_notes.pdf

[144] Shai Shalev-Shwartz and Yoram Singer. Logarithmic regret algorithms for
strongly convex repeated games. Technical report, 2007. 105

[145] Shai Shalev-Shwartz and Ambuj Tewari. Stochastic methods for l1-regularized
loss minimization. Journal of Machine Learning Research, 12:1865–1892, 2011.
147

[146] Shai Shalev-Shwartz and Tong Zhang. Accelerated Mini-Batch Stochastic Dual
Coordinate Ascent. In NIPS, pages 1–17, May 2013. 95

[147] Shai Shalev-Shwartz and Tong Zhang. Accelerated Proximal Stochastic
Dual Coordinate Ascent for Regularized Loss Minimization. arXiv preprint
arXiv:1309.2375, pages 1–38, September 2013. 95

[148] Ohad Shamir and Tong Zhang. Stochastic Gradient Descent for Non-smooth
Optimization: Convergence Results and Optimal Averaging Schemes. In Pro-
ceedings of the 30th International Conference on Machine Learning - ICML ’13,
volume 28, 2013. 94

[149] Jonah Sherman. Breaking the multicommodity flow barrier for o(
√

log n)-
approximations to sparsest cut. In Proceedings of the 50th Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS ’09, pages 363–372, 2009.
210

[150] Jonah Sherman. Nearly Maximum Flows in Nearly Linear Time. In 2013 IEEE
54th Annual Symposium on Foundations of Computer Science, pages 263–269.
IEEE, October 2013. 90

[151] Daniel A. Spielman and Nikhil Srivastava. Graph Sparsification by Effective
Resistances. SIAM Journal on Computing, 40(6):1913–1926, January 2011. 207,
208, 217, 220, 224, 244

[152] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems. In Pro-
ceedings of the thirty-sixth annual ACM symposium on Theory of computing -
STOC ’04, page 81, New York, New York, USA, 2004. ACM Press. 208, 220,
248

[153] Daniel A. Spielman and Shang-Hua Teng. Spectral Sparsification of Graphs.
SIAM Journal on Computing, 40(4):981–1025, January 2011. 208

[154] David Steurer. Fast SDP algorithms for constraint satisfaction problems. In
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms - SODA ’10, pages 684—-697, 2010. 210

[155] Joerg Stoye. Axioms for minimax regret choice correspondences. Journal of
Economic Theory, 146(6):2226–2251, 2011. 45, 82

267

[156] Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for
modeling nesterov’s accelerated gradient method: Theory and insights. In Ad-
vances in Neural Information Processing Systems, pages 2510–2518, 2014. 95,
105

[157] David R. M. Thompson and Kevin Leyton-Brown. Valuation uncertainty and
imperfect introspection in second-price auctions. In Proceedings of the 22nd
National Conference on Artificial Intelligence - Volume 1, AAAI ’07, pages
148–153, 2007. 44

[158] Luca Trevisan. Parallel Approximation Algorithms by Positive Linear Program-
ming. Algorithmica, 21(1):72–88, May 1998. 116, 144

[159] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders.
The Journal of Finance, 16(1):8–37, 1961. 18

[160] Nisheeth K. Vishnoi. personal communication, 2014. 207, 208

[161] Abraham Wald. Statistical decision functions. The Annals of Mathematical
Statistics, 20(2):pp. 165–205, 1949. 45, 82

[162] R. M. Wilcox. Exponential operators and parameter differentiation in quantum
physics. Journal of Mathematical Physics, 8(4):962–982, 1967. 199

[163] Lin Xiao. Dual averaging method for regularized stochastic learning and online
optimization. The Journal of Machine Learning Research, 11:2543–2596, 2010.
92

[164] Penghui Yao. Private communication, April 2015. 187, 190

[165] Neal E. Young. Sequential and parallel algorithms for mixed packing and cov-
ering. In 42nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS’01), pages 538–546. IEEE Comput. Soc, 2001. 97, 117, 118, 119, 122,
133, 143, 145, 146, 187, 190

[166] Neal E. Young. Nearly linear-time approximation schemes for mixed
packing/covering and facility-location linear programs. ArXiv e-prints,
abs/1407.3015, July 2014. 118, 143, 145, 146, 158, 187, 190

[167] Martin Zinkevich. Online convex programming and generalized infinitesimal
gradient ascent. In Proceedings of the 20th International Conference on Machine
Learning (ICML-03), pages 928–936, 2003. 214

[168] Anastasios Zouzias. A matrix hyperbolic cosine algorithm and applications.
In Proceedings of the 39th International Colloquium Conference on Automata,
Languages, and Programming - Volume Part I, ICALP’12, pages 846–858,
Berlin, Heidelberg, 2012. Springer-Verlag. 207, 208

268

[169] Edo Zurel and Noam Nisan. An efficient approximate allocation algorithm for
combinatorial auctions. In Proceedings of the 3rd ACM conference on Electronic
Commerce, pages 125–136. ACM, 2001. 116, 144

269

	I Novel Frameworks for Auctions
	1 Knightian Analysis of the Vickrey Mechanism
	1.1 Introduction
	1.2 Model
	1.2.1 Notation for Multi-Unit Auctions
	1.2.2 Knightian Valuation Uncertainty

	1.3 The First Theorem
	1.4 The Second Theorem
	1.5 The Third Theorem
	1.A Knightian Revelation Principle
	1.B Proof of Theorem 1.6
	1.C Proof of Theorem 1.8
	1.D Proof of Corollary 1.10
	1.E Proof of Theorem 1.14
	1.E.1 A Structural Lemma
	1.E.2 Deducing Theorem 1.14 from Lemma 1.18

	1.F The Set of Undominated Strategies is Non-Empty
	1.G The Work of Lopomo, Rigotti, and Shannon

	2 Knightian Self Uncertainty in the VCG Mechanism for Unrestricted Combinatorial Auctions
	2.1 Introduction
	2.1.1 Theorem 2.1: VCG Auction in Undominated Strategies
	2.1.2 Theorem 2.2: VCG Auctions in Regret-Minimizing Strategies
	2.1.3 The Meaningfulness of Theorem 2.2 and a Rationality Bridge Lemma
	2.1.4 In Sum
	2.1.5 Roadmap

	2.2 Related Work
	2.3 Classical and Knightian Basic Notions
	2.4 A Weaker Version of Theorem 2.1
	2.5 Proof of Theorem 2.2
	2.A Theorem 2.1: How to Obtain a Stronger Result and a Characterization
	2.A.1 Geometric Description of V(Ki)

	2.B Proof of One Side of Theorem 2.1a
	2.B.1 Case 1
	2.B.2 Case 2
	2.B.3 Case 3

	2.C Proof of Theorem 2.1b
	2.C.1 Construction of The Hard Instance
	2.C.2 Putting Things Together

	2.D Theorem 2.2 with Mixed Strategies
	2.D.1 Why Allowing Mixed Strategies Yields a Different Result
	2.D.2 Proof of Theorem 2.2'

	3 Bridging Utility Maximization and Regret Minimization
	3.1 Introduction
	3.2 Basic Notions
	3.3 Result
	3.4 Implications for Mechanism Design
	3.5 Pure vs. Mixed Strategies

	II Novel Frameworks for Optimization
	4 Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent
	4.1 Introduction
	4.1.1 Understanding First-Order Methods: Gradient Descent and Mirror Descent
	4.1.2 Our Conceptual Question
	4.1.3 Accelerated Gradient Method From Linear Coupling
	4.1.4 Conclusion

	4.2 Preliminaries
	4.2.1 Review of Primal Descent
	4.2.2 Review of Mirror Descent
	4.2.3 Remark

	4.3 black Warm-Up Accelerated Gradient Method with Fixed Step Length
	4.4 black Final Accelerated Gradient Method with Variable Step Lengths
	4.5 Strong Convexity Version of Accelerated Gradient Method
	4.A Several Remarks on First-Order Methods
	4.A.1 Importance of Non-Euclidean Norms
	4.A.2 Multiplicative Weight Updates as Mirror Descent
	4.A.3 Partial Equivalence Between Mirror Descent and Dual Averaging
	4.A.4 Deducing the Mirror-Descent Guarantee via Gradient Descent

	4.B Missing Proof of Section 4.2
	4.B.1 Missing Proof for Gradient Descent
	4.B.2 Missing Proof for Mirror Descent

	4.C Missing Proofs of Section 4.4

	5 Using Optimization to Solve Positive LPs Faster in Parallel
	5.1 Introduction
	5.1.1 Our Results
	5.1.2 Roadmap

	5.2 Smoothing the Positive LP Objective
	5.3 Parallelizable Packing LP Solver
	5.3.1 The Gradient Descent Lemma
	5.3.2 The Mirror Descent Lemma
	5.3.3 The Coupling Lemma

	5.4 Parallelizable Covering LP Solver
	5.A Empirical Evaluation
	5.A.1 AutoStep: Automatic Step-Length Computation
	5.A.2 Illustration

	5.B Semi-Stateless Feature of our Positive-LP Solver
	5.C Missing Proof of Proposition 5.2
	5.D Parallelizable Covering LP Solver
	5.D.1 Objective Optimality
	5.D.2 Approximate Feasibility

	6 Nearly-Linear Time Positive LP Solver with Faster Convergence Rate
	6.1 Introduction
	6.1.1 Our Results
	6.1.2 Roadmap

	6.2 Relaxation of the Packing Linear Program
	6.3 Our Packing LP Solver
	6.3.1 Step 1: Mirror Descent Guarantee
	6.3.2 Step 2: Gradient Descent Guarantee
	6.3.3 Step 3: Putting All Together

	6.4 Sketching the Main Ideas for Our Covering LP Solver
	6.5 Relaxation of the Covering Linear Program
	6.6 Our Covering LP Solver
	6.6.1 Step 1: Distance Adjustment
	6.6.2 Step 2: Gradient Truncation
	6.6.3 Step 3: Mirror Descent Guarantee
	6.6.4 Step 4: Gradient Descent Guarantee
	6.6.5 Step 5: Putting All Together

	6.A Missing Proofs for Section 6.2
	6.B Missing Proofs for Section 6.3
	6.C Missing Proofs for Section 6.5
	6.D Missing Proofs for Section 6.6
	6.E Efficient Implementation of [alg:cor-packing]PacLPSolver
	6.F Efficient Implementation of [alg:cor-covering]CovLPSolver

	7 Using Optimization to Obtain a Width-Independent, Parallel, Simpler, and Faster Positive SDP Solver
	7.1 Introduction
	7.1.1 Roadmap

	7.2 Some False and Some True Inequalities in Matrix Algebra
	7.3 Our Algorithm
	7.4 The Convex Objective
	7.5 Convergence Analysis for Packing SDP
	7.5.1 The Gradient Descent Lemma

	7.6 Convergence Analysis for Covering SDP
	7.A Missing Proofs for Section 7.2
	7.B Missing Proofs for Section 7.5
	7.B.1 The Gradient Descent Lemma
	7.B.2 The Coupling Lemma
	7.B.3 The Mirror Descent Lemma
	7.B.4 Proof of Theorem 7.13

	7.C Missing Proofs for Section 7.6

	8 Spectral Sparsification and Regret Minimization Beyond Matrix Multiplicative Updates
	8.1 Introduction
	8.1.1 Regret Minimization
	8.1.2 Extensions

	8.2 Preliminaries
	8.3 Regret Minimization in Full Information
	8.4 Warm-Up: Upper-Sided Linear-Sized Sparsification
	8.5 Linear-Sized Sparsification
	8.6 Efficient Implementation for Graph Sparsification
	8.A Partial Equivalence Between FTRL and Mirror Descent
	8.B Graph Notations
	8.C Weak Unweighted Sparsifier
	8.D Proof of Lemma 8.3
	8.E Missing Proofs in Section 8.3
	8.F Robust Linear-Sized Sparsification
	8.F.1 The Problem
	8.F.2 Our Algorithm
	8.F.3 Our Analysis
	8.F.4 An Additional Property

	8.G Efficient Implementation for Graph Sparsifications
	8.G.1 Missing Lemmas

	8.H Efficient Implementation for Other Problems

	anm0:

