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Abstract

In revenue maximization of selling a digital product in a social network, the utility of an
agent is often considered to have two parts: a private valuation, and linearly additive influences
from other agents. We study the incomplete information case where agents know a common
distribution about others’ private valuations, and make decisions simultaneously. The “rational
behavior” of agents in this case is captured by the well-known Bayesian Nash equilibrium.

Two challenging questions arise: how to compute an equilibrium and how to optimize a
pricing strategy accordingly to maximize the revenue assuming agents follow the equilibrium?
In this paper, we mainly focus on the natural model where the private valuation of each agent
is sampled from a uniform distribution, which turns out to be already challenging.

Our main result is a polynomial-time algorithm that can exactly compute the equilibrium
and the optimal price, when pairwise influences are non-negative. If negative influences are
allowed, computing any equilibrium even approximately is PPAD-hard. Our algorithm can
also be used to design an FPTAS for optimizing discriminative price profile.

1 Introduction

Social influence in large social networks provides huge monetization potential, which is under in-
tensive investigation by companies as well as research communities. Many digital products exhibit
explicit social values. For example, Zune players can share music with each other, so the utility
one can expect from a Zune player partially depends on the number of her friends having the same
product. In a more direct case of instant messaging, the utility for one user is critically determined
by the number of her friends who use the same instant messenger. Therefore, how to design, mar-
ket, and price products with external social values depends intimately on the understanding and
utilization of social influence in social networks.
∗Part of this work was done while the authors were visiting Microsoft Research Asia.
†A preliminary version of this work has appeared as a chapter of the B.Sci thesis of this author [Zhu10].
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In this paper, we study the problem of selling a digital product to agents in a social network. To
incorporate social influence, we assume each agent’s utility of having the product is the summation
of two parts: the private intrinsic valuation and the overall influence from her friends who also have
the product. In this paper, we study the linear influence case, i.e., the overall influence is simply
the summation of influence values from her friends who have the product.

Given such assumption, the purchasing decision of one agent is not solely made based on her
own valuation, but also on information about her friends’ purchasing decisions. However, a typical
agent does not have complete information about others’ private valuations, and thus might make
the decision based on her belief of other agents’ valuations.

In this paper, we study the case when this belief forms a public distribution, and rely on the
solution concept of Bayesian Nash equilibrium [Har67]. Specifically, each agent knows her own
private valuation (also referred to as her type); in addition, there is a distribution of this private
valuation, publicly known by everyone in the network as well as the seller. In this paper, we study
the case that the joint distribution is a product distribution, and the valuations for all agents are
sampled independently from possibly different uniform distributions.

Computing the Equilibria. Usually, there exist multiple equilibria in this game. We first
study the case when all influences are non-negative. We show that there exist two special ones: the
pessimistic equilibrium and the optimistic equilibrium, and all other equilibria are between these
two. We then design a polynomial time algorithm to compute the pessimistic (resp. optimistic)
equilibrium exactly.

The overall idea is to utilize the fact that the pessimistic (resp. optimistic) equilibrium is “mono-
tonically increasing” when the price increases. However, the iterative method requires exponential
number of steps to converge, just like many potential games which may well be PLS-hard. Our
algorithm is based on the line sweep paradigms, by increasing the price p and computing the equi-
librium on the way. There are several challenges we have to address to implement the line sweep
algorithm. See Section 3.2 for more discussions on the difficulties.

On the negative side, when there exist negative influences among agents, the monotone property
of the equilibria does not hold. In fact, we show that computing an approximate equilibrium is
PPAD-hard for a given price, by a reduction from the two player Nash equilibrium problem.

Optimal Pricing Strategy. When the seller considers offering a uniform price, our proposed
line sweep algorithm calculates the equilibrium as a function of the price. This closed form allows
us to find the price for the optimal revenue.

We also discuss the extensions to discriminative pricing setting: agents are partitioned into
k groups and the seller can offer different prices to different groups. Depending on whether the
algorithm can choose the partition or not, we discuss the hardness and approximation algorithms
of these extensions.

1.1 Related Work

Influence maximization. Cabral et al. [CSW99] studied the property of the optimal prices over
time with network externality and strategic agents. They show that the seller might set a low
introductory price to attract a critical mass of agents. Another notable body of work in computer
science is the optimal seeding problem (e.g. Kempe et al. [KKT03] and Chen et al. [CWY09]), in
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which a set of k seeds are selected to maximize the total influence according to some stochastic
propagation model.

Pricing with equilibrium models. When there is social influence, a large stream of literature
is focusing on simultaneous games. This is also known as the “two-stage” game where the seller sets
the price in the first stage, and agents play a one-shot game in their purchasing decisions. Agents’
rational behavior in this case is captured by the Nash equilibrium (or Bayesian Nash equilibrium if
the information is incomplete).

The concept and existence of pessimistic and optimistic equilibria is not new. For instance,
in analogous problems with externalities, Milgrom and Roberts [MR90] and Vives [Viv90] have
witnessed the existence of such equilibria in the complete information setting. Notice that our
pricing problem, when restricted to complete information, can be trivially solved by an iterative
method.

In incomplete information setting, Vives and Van Zandt [VZV07] prove a similar existential
result using iterative methods. However, they do not provide any convergence guarantee. In our
setting, we have shown in Section 3.1 that such type of iterative methods may take exponential
time to converge. Our proposed algorithm instead exactly computes the equilibrium, through a
much move involved (but constructive) method. In parallel to this work, Sundararajan [Sun08]
also discover the monotonicity of the equilibria, but for symmetry and limited knowledge of the
structure (only the degree distribution is known).

It is worth noting that those works above do consider the case when influence is not linear
(but for instance supermodular). Though our paper focuses on linear influences, our monotonicity
results for equilibria do easily extend to non-linear ones. See Section 2.

When the influence is linear, Candogan, Bimpikis and Ozdaglar [CBO10] study the problem with
(uniform) pricing model for a divisible good on sale. It differs from our paper in the model: they
are in complete information and divisible good setting; more over, they have relied on a diagonal
dominant assumption, which simplifies the problem and ensures the uniqueness of the equilibrium.

Another paper for linear influence is by Bloch and Querou [BQ09], which also studies the uniform
pricing model. When the influence is small, they approximate the influence matrix by taking the
first 3 layers of influence, and then an equilibrium can be easily computed. They also provide
experiments to show that the approximation is numerically good for random inputs.

Pricing with cascading models. In contrast to the simultaneous-move game considered by us
(and many others), another stream of work focuses on the cascading models with social influence.

Hartline, Mirrokni and Sundararajan [HMS08] study the explore and exploit framework. In their
model the seller offers the product to the agents in a sequential manner, and assumes all agents are
myopic, i.e., each agent is making the decision based on the known results of the previous agents in
the sequence. As they have pointed out, if the pricing strategy of the seller and the private value
distributions of the subsequent agents are publicly known, the agents can make more “informed”
decisions than the myopic ones. In contrast to them, we consider “perfect rational” agents in the
simultaneous-move game, where agents make decisions in anticipation of what others may do given
their beliefs to other agents’ valuations.

Arthur et al. [AMSX09] also use the explore and exploit framework, and study a similar problem;
potential buyers do not arrive sequentially as in [HMS08], but can choose to buy the product with
some probability only if being recommended by friends.
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Recently, Akhlaghpour et al. [AGH+10] consider the multi-stage model that the seller sets d-
ifferent prices for each stage. In contrast to [HMS08], within each stage, agents are “perfectly
rational”, which is characterized by the pessimistic equilibrium in our setting with complete infor-
mation. As mentioned in [AGH+10], they did not consider the case where a rational agent may
defer her decision to later stages in order to improve the utility.

Other works. If the value of the product does not exhibit social influence, the seller can maximize
the revenue following the optimal auction process by the seminal work of Myerson [Mye81]. Truthful
auction mechanisms have also been studied for digital goods, where one can achieve constant ratio
of the profit with optimal fixed price [GHK+06, HM05]. On computing equilibria for problems that
guarantees to find an equilibrium through iterative methods, most of them, for instance the famous
congestion game, is proved to be PLS-hard [FPT04].

2 Model and Solution Concept

We consider the sale of one digital product by a seller with zero cost, to the set of agents V = [n] =
{1, 2, . . . , n} in a social network. The network is modeled as a simple directed graphs G = (V,E)
with no self-loops.

• Valuation: Agent i has a private value vi ≥ 0 for the product. We assume vi is sampled
from a uniform distribution with interval [ai, bi] for 0 ≤ ai < bi, which we denote as U(ai, bi).
The values ai and bi are common knowledge.

• Price: We consider the seller offering the product at a uniform price p. We postpone dis-
criminative pricing models in Appendix C.2.

• Revenue: Let d = {d1, . . . , dn} ∈ {0, 1}n be the decision vector the agents make, i.e., di = 1
if agent i buys the product and 0 otherwise. The revenue of the seller is defined as

∑
i p · di.

When the decisions are random variables, the revenue is defined as the expected payments
received from the users.

• Influence: Let matrix T = (Tj,i) with Tj,i ∈ R and i, j ∈ V represent the influences among
agents, with Tj,i = 0 for all (j, i) /∈ E. In particular, Tj,i is the utility that agent i receives
from agent j, if both of them buy the product. Except for the hardness result, we consider
Tj,i to be non-negative.

• Utility: Let d−i be the decision vector of the agents other than agent i. For convenience,
we denote 〈d′i,d−i〉 the vector by replacing the i-th entry of d by d′i. In particular, given the
influence matrix T, the utility is defined as:

ui(〈di,d−i〉, vi, p) =

{
vi − p+

∑
j∈[n] dj · Tj,i, if di = 1

0, if di = 0
(1)

Remark 2.1. In the definition, we require ai < bi. This condition can be relaxed to ai ≤ bi, i.e.,
we are able to handle the fixed value case as well. For instance, this only requires a separate case
analysis in our proposed line sweep algorithm in Section 3. However, for ease of presentation, we
assume ai < bi in the remaining of the paper, unless otherwise noted.
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Our question is: “which price shall the seller offer to maximize the total revenue?” In order
to answer this question, it is necessary to study the agents’ rational behavior using the concept
Bayesian Nash equilibrium (BNE). For ease of presentation, we redefine the equilibrium based
on the buying probability of the agents. We will show that they are equivalent. Its proof is in
Appendix A.

Definition 2.2. The probability vector q = (q1, q2, ..., qn) ∈ [0, 1]n is an equilibrium at price p, if
(where med is the median function)

∀i ∈ [n] , qi = Prvi∼U(ai,bi)

[
vi − p+

∑
j∈[n]

Tj,i · qj ≥ 0
]

= med

{
0, 1,

bi − p+
∑

j∈[n] Tj,iqj

bi − ai

}
. (2)

Lemma 2.3. Given equilibrium q, the strategy profile such agent i “buys the product if and only
if her internal valuation vi ≥ p −

∑
j 6=i Tj,iqj” is a Bayesian Nash equilibrium; on the contrary, if

a strategy profile is a Bayesian Nash equilibrium, then the probability that agent i buys the product
satisfies Equation 2.

Equation 2 can be also defined in the language of a transfer function, which we will extensively
reply on in the rest of the paper.

Definition 2.4 (Transfer function). Given price p, we define the transfer function fp : [0, 1]n →
[0, 1]n as

[fp(q)]i = med{0, 1, [gp(q)]i} (3)

in which

[gp(q)]i =
bi − p+

∑
j∈[n] Tj,iqj

bi − ai
.

Notice that q is an equilibrium at price p if and only fp(q) = q.

Using Brouwer fixed point theorem, the existence of BNE is not surprising, even when influences
are negative. However, we will show in Appendix C.1 that computing BNE will be PPAD-hard
with negative influences. We now define the pessimistic and optimistic equilibria (similar to e.g.
Van Zandt and Vives [VZV07]) based on the transfer function.

Definition 2.5. Let f
(1)
p = fp, and f

(m)
p (q) = fp(f

(m−1)
p (q)) for m ≥ 2. When all influences are

non-negative, we define

• Pessimistic equilibrium: q(p) = limm→∞ f
(m)
p (0);

• Optimistic equilibrium: q(p) = limm→∞ f
(m)
p (1).

We remark that both limits exist by monotonicity of f (see Fact 2.6 below), when all influences
are non-negative. In addition, q(p) and q(p) are both equilibria themselves, because fp(q(p)) = q(p)
and fp(q(p)) = q(p). We later show that q(p) and q(p) are the lower bound and upper bound for
any equilibrium at price p respectively. Now we state some properties of equilibria, which we will
use extensively later. Their proofs are in Appendix A.

For two vectors v1,v2 ∈ Rn, we write v1 ≥ v2 if ∀i ∈ [n], [v1]i ≥ [v2]i and we write v1 > v2 if
v1 ≥ v2 ∧ v1 6= v2.
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Fact 2.6. When all influences are non-negative, given p1 ≤ p2,q
1 ≤ q2, the transfer function

satisfies fp2(q1) ≤ fp1(q1) ≤ fp1(q2).

Lemma 2.7. When all influences are non-negative, equilibria satisfy the following properties:

a) For any equilibrium q at price p, we have q(p) ≤ q ≤ q(p).

b) Given price p, for any probability vector q ≤ q(p), we have f
(∞)
p (0) = q(p) = f

(∞)
p (q).

c) Given price p1 ≤ p2, we have q(p1) ≥ q(p2) and q(p1) ≥ q(p2).

d) q(p) = limε→0+ q(p+ ε) and q(p) = limε→0− q(p+ ε).

In this paper, we consider the problem that whether we can exactly calculate the pessimistic
(resp. optimistic) equilibrium, and whether we can maximize the revenue. The latter is formally
defined as follows:

Definition 2.8 (Revenue maximization problem).
Assume the value of agent i is sampled from U(ai, bi) and the influence matrix T is given. The
revenue maximization problem is to compute an optimal price with respect to the pessimistic equi-
librium (resp. optimistic equilibrium ):

arg max
p>0

∑
i∈[n]

p · [q(p)]i (resp. arg max
p>0

∑
i∈[n]

p · [q(p)]i ).

Notice that the optimal revenue with respect to the pessimistic equilibrium is robust against
equilibrium selection. By Lemma 2.7(a), no matter which equilibrium the agents choose, this
revenue is a minimal guarantee from the seller’s perspective. The revenue guarantees for pessimistic
and optimistic equilibria is an important objective to study; see for instance the price of anarchy
and the price of stability in [NRTV07] for details.

3 The Main Algorithm

When all influences are non-negative, can we calculate q(p) and q(p) in polynomial time? We
answer this question positively in this section by providing an efficient algorithm which computes
the optimal revenue as well as the q(p) and q(p) for any price p.

3.1 A counter example for iterative method

Before coming to our efficient algorithm, notice that it is possible to iteratively apply the transfer
function (Equation 3) to reach the equilibria by definition. However, this may require exponential
number of steps to converge, as illustrated in the following example.

p = 1

[a1, b1] = [0, 2], [ai, bi] = [0, 1](2 ≤ i ≤ n)

Ti,i+1 = 0.5(1 ≤ i ≤ n− 2), Tn−1,n = Tn,n−1 = 1, other Tj,i = 0

we can obtain that
f (n−2)
p (0) = (1/2, 1/22, ..., 1/2n−2, 0, 0)
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We proceed the calculation:
f
(n−2+2k)
p (0) = (1/2, 1/22, ..., 1/2n−2, k/2n−1, k/2n−1), if 0 ≤ k ≤ 2n−2

f
(n−2+2k+1)
p (0) = (1/2, 1/22, ..., 1/2n−2, (k + 1)/2n−1, k/2n−1), if 0 ≤ k < 2n−2

f
(∞)
p (0) = (1/2, 1/22, ..., 1/2n−2, 1, 1)

It can be seen from above that it takes Ω(2n) number of steps before we reach the fixed point.

3.2 Outline of our line sweep algorithm

We start to introduce our algorithm with the easy case where valuations of agents are fixed. Consider
the pessimistic decision vector d(p) as a function of p. By monotonicity, there are at most O(n)
different such vectors when p varies from +∞ to 0. In particular, at each price p, if we decrease p
gradually to some threshold value, one more agent would change his decision to buy the product.
Naturally, such kind of process can be casted in the “line sweep algorithm” paradigm.

When the private valuations of the agents are sampled from uniform distributions, the line sweep
algorithm is much more complicated. We now introduce the algorithm to obtain the pessimistic
equilibrium q(p), while the method to obtain q(p) is similar.1 The essence of the line sweep
algorithm is processing the events corresponding to some structural changes. We define the possible
structures of a probability vector as follows.

Definition 3.1. Given q ∈ [0, 1]n, we define the structure function S : [0, 1]n → {0, ?, 1}n satisfy-
ing:

[S(q)]i =


0, qi = 0
?, qi ∈ (0, 1)
1, qi = 1.

(4)

Our line sweep algorithm is based on the following fact: when p is sufficiently large, obviously
q(p) = 0; with the decreasing of p, at some point p = p1 the pessimistic equilibrium q(p) becomes
non-zero, and there exists some structural change at this moment. Due to the monotonicity of q(p)
in Lemma 2.7, such structural changes can happen at most 2n times. (Each agent i can contribute to
at most two changes: 0→ ? and ?→ 1.) Therefore, there exist threshold prices p1 > p2 > · · · > pm
for m ≤ 2n such that within two consecutive prices, the structure of the pessimistic equilibrium
remains unchanged and q(p) is a linear function of p. This indicates that the total revenue, i.e.,
p ·
∑
i [q(p)]i, and its maximum value is easy to obtain. If we can compute the threshold prices

and the corresponding pessimistic equilibrium q(p) as a function of p, it will be straightforward to
determine the optimal price p.

There are several difficulties to address in this line sweep algorithm.

• First, degeneracies, i.e., more than one structural changes in one event, are intrinsic in our
problem. Unlike geometric problems where degeneracies can often be eliminated by pertur-
bations, the degeneracies in our problem are persistent to small perturbations.

• Second, to deal with degeneracies, we need to identify the next structural change, which is
related to the eigenvector corresponding to the largest eigenvalue of a linear operator. By a
careful inspection, we avoid solving eigen systems so that our algorithm can be implemented
by pure algebraic computations.

1We sweep the price from +∞ to 0 to compute the pessimistic equilibrium, but we need to sweep from 0 to +∞
for the optimistic one.
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• Third, after the next change is identified, the usual method of pushing the sweeping line further
does not work directly in our case. Instead, we recursively solve a subproblem and combine
the solution of the subproblem with the current one to a global solution. The polynomial
complexity of our algorithm is guaranteed by the monotonicity of the structures.

We first design a line sweep algorithm for the problem with a diagonal dominant condition,
which will not contain degenerate cases, in Section 3.3. Then we describe techniques to deal with
the unrestricted case in Section 3.4.

3.3 Diagonal dominant case

Definition 3.2 (Diagonal dominant condition).
Let Li,j = Tj,i/(bi − ai) and Li,i = Ti,i = 0. The matrix I − L is strictly diagonal dominant, if∑
j Li,j =

∑
j Tj,i/(bi − ai) < 1.

This condition has some natural interpretation on the buying behavior of the agents. It means
that the decision of any agent cannot be solely determined by the decisions of her friends. In
particular, the following two situations cannot occur simultaneously for any agent i and price p: a)
agent i will not buy the product regardless of her own valuation when none of her friends bought
the product(p ≥ bi), and b) agent i will always buy the product regardless of her own valuation
when all her friends bought the product (

∑
j Tj,i + ai ≥ p).

In our line sweep algorithm, we maintain a partition Z ∪W ∪ O = V = [n], and name Z the
zero set, W the working set and O the one set. This corresponds to the structure s ∈ {0, ?, 1}n as
follows:

si = 0 (∀i ∈ Z), si = ? (∀i ∈W ), si = 1 (∀i ∈ O).

We use xW or [x]W to denote the restriction of vector x on set W , and for simplicity we write
〈xZ ,xW ,xO〉 = x. Let LW×W be the projection of matrix L to W ×W , and f |W be the restriction
of function f on W .

We start from the price p = +∞ where the structure of the pessimistic equilibrium q(p) is

s0 = 0, i.e., Z = [n] and W = O = ∅. The first event happens when p drops to p1 = maxi bi and
q(p) starts to become non-zero.

Assume now we have reached threshold price pt, the current pessimistic equilibrium is qt = q(pt),

and the structure in interval (pt, pt−1) (or (pt,+∞) if t = 1) is st−1. We define

x =

(
b1 − pt
b1 − a1

,
b2 − pt
b2 − a2

, . . . ,
bn − pt
bn − an

)T

, and y =

(
1

b1 − a1
,

1

b2 − a2
, · · · , 1

bn − an

)T

.

To analyze the pessimistic equilibrium in the next price interval, for price p = pt − ε where
ε > 0, we write function gp(·) (recall Equation 3) as:

gpt−ε(q) = x + εy + Lq.

For p ∈ (pt, pt−1), let partition Z∪W ∪O = [n] be consistent with the structure st−1. According
to Def. 3.1 and the right continuity qt = limp→pt+ q(p) (see Lemma 2.7d), we have

∀i ∈ Z, [gpt(q
t)]i = [x + Lqt]i ≤ 0

∀i ∈W, [gpt(q
t)]i = [x + Lqt]i ∈ (0, 1]

∀i ∈ O, [gpt(q
t)]i = [x + Lqt]i ≥ 1

(5)
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Step 1: For any i ∈ Z, if [x + Lqt]i = 0, move i from zero set Z to working set W ; for any
i ∈W , if [x + Lqt]i = 1, move i from working set W to one set O.

Notice that the structural changes we apply in Step 1 are exactly the changes defining the
threshold price pt. We will see in a moment that after the process in Step 1, the new partition will
be the next structure st for p ∈ (pt+1, pt). In other words, there is no more structural change at
price pt.

In the next two steps, we calculate the next threshold price pt+1. For notation simplicity, we
assume Z,W and O remain unchanged in these two steps. When p decreases by ε, we show that
the probability vector of agents in W , [q(p)]W , increases linearly with respect to ε. (See rW (ε)
below.) However, this linearity holds until we reach some point, where the next structural change
takes place.

Step 2: Define the vector r(ε) ∈ Rn, and let:

rW (ε) = ε(I − LW×W )−1yW + qt
W

= ε(I − LW×W )−1yW + [x + Lqt]W
rZ(ε) = xZ + εyZ + LZ×W rW (ε) + LZ×O1O

= ε(yZ + LZ×W (I − LW×W )−1yW ) + [x + Lqt]Z
rO(ε) = xO + εyO + LO×W rW (ε) + LO×O1O

= ε(yO + LO×W (I − LW×W )−1yW ) + [x + Lqt]O

(6)

Clearly, r(ε) is linear to ε and we write r(ε) = ε` + (x + Lqt) where ` = 〈`1, `2, . . . , `n〉 ∈ Rn
is the linear coefficient derived from Equation 6. When I − L is strictly diagonal dominant, the
largest eigenvalue of LW×W is smaller than 1. Using this property one can verify (see Lemma B.1)
that ` is strictly positive.

Step 3:

εmin = min

{
min
i∈Z

{
0− [x + Lqt]i

`i

}
,min
i∈W

{
1− [x + Lqt]i

`i

}}
(7)

Using the positiveness of vector ` one can verify that εmin > 0 (see Lemma B.1). We show that
the next threshold price pt+1 = pt− εmin by the following lemma. The proof is in the Appendix B.

Lemma 3.3. ∀0 < ε ≤ εmin, q(pt − ε) = 〈0Z , rW (ε),1O〉.

We remark here that the above lemma has confirmed that our structural adjustments in Step
1 are correct and complete. Now we let pt+1 = pt − εmin,qt+1 = 〈0Z , rW (εmin),1O〉. The next
structural change will take place at p = pt+1. This is because according to the definition of εmin
(Equation 7), there must be some

i ∈W ∧ [x + εminy + Lqt+1]i = 1, or i ∈ Z ∧ [x + εminy + Lqt+1]i = 0.

One can see that in the next iteration, this i will move to one set O or working set W accordingly.
Therefore, we can iteratively execute the above three steps by sweeping the price further down. For
completeness, we attach the pseudocode in Algorithm 1 in Appendix B.

The return value of our constrained line sweep method is a function q which gives the pessimistic
equilibrium for any price p ∈ R, and q(p) is a piecewise linear function of p with no more than
2n + 1 pieces. All three steps in our algorithm can be done in polynomial time. Since there are
only O(n) threshold prices, we have the following result.
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Theorem 3.4. When the matrix I − L is strictly diagonal dominant, Algorithm 1 calculates the
pessimistic equilibrium q(p) (resp. q(p)) for any given price p in polynomial time, together with the
optimal revenue.

3.4 General case

After relaxing the diagonal dominance condition, the algorithm becomes more complicated. This
can be seen from this simple scenario. There are 2 agents, with [a1, b1] = [a2, b2] = [0, 1], and
T1,2 = T2,1 = 2. One can verify that q(p) = (0, 0)T when p ≥ 1; q(p) = (1, 1)T when p < 1.

In this example, there is an equilibrium jump at price p = 1, i.e., q(1) 6= limp→1− q(p). Algo-
rithm 1 essentially requires that both the left and the right continuity of q(p). However, only the
right continuity is unconditional by Lemma 2.7d. More importantly, degeneracies may occur: the
new structure st when p = pt cannot be determined all in once in Step 1. When p goes from pt + ε
to pt − ε, there might take place even two-stage jumps: some index i might leave Z for O, without
being in the intermediate state.

Let ρ(L) be the largest norm of the eigenvalues in matrix L. The ultimate reason for such
degeneracies, is ρ(LW×W ) ≥ 1 and (I −LW×W )−1 6= limm→∞(I +LW×W + · · ·+Lm−1

W×W ). We will
prove shortly in such cases, those structural changes in Step 1 are incomplete, that is, as p sweeps
across pt, at least one more structural change will take place. We derive a method to identify one
pivot, i.e. an additional structural change, in polynomial time. Afterwards, we recursively solve a
subproblem with set O taken out, and combine the solution from the subproblem with the current
one. The follow lemma shows that whether ρ(L) < 1 can be determined efficiently.

Lemma 3.5. Given non-negative matrix M , if I −M is reversible and (I −M)−1 is also non-
negative, then ρ(M) < 1; on the contrary, if I −M is degenerate or if (I −M)−1 contains negative
entries, ρ(M) ≥ 1.

3.4.1 Finding the pivot.

When ρ(LW×W ) < 1 for the new working set W , one can find the next threshold price pt+1 following
Step 2 and 3 in the previous subsection. Now, we deal with the case that ρ(LW×W ) ≥ 1 by showing
that there must exists some additional agent i ∈ W such that [q(p)]i = 1 for any p smaller than
the current price. We call such agent a pivot.

Since ρ(LW×W ) ≥ 1, we can always find a non-empty set W1 ⊂ W and W2 = W1 ∪ {w} ⊂ W ,
satisfying ρ(LW1×W1

) < 1 but ρ(LW2×W2
) ≥ 1. The pair (W1,W2) can be found by ordering the

elements in W and add them to W1 one by one. We now show that there is a pivot in W2.
As LW2×W2

is a non-negative matrix, based on Lemma B.2 there exists a non-zero eigenvector
uW2 ≥ 0W2 such that LW2×W2uW2 = λuW2 and λ = ρ(LW2×W2) ≥ 1. uW2 can be extended to [n]
by defining u[n]\W2

= 0[n]\W2
. Let

k = arg min
k∈W2,uk 6=0

1− qtk
uk

= arg min
k∈[n],uk 6=0

1− qtk
uk

(8)

Now we prove that k is a pivot. Intuitively, if we slightly increase the probability vector qtW2

by δuW2
, where δ is a small constant, by performing the transfer function only on agents in W

m times, their probability will increase by δ(1 + λ + .. + λm)uW2
, while λ ≥ 1. Therefore, after

performing the transfer function sufficiently many times, agent k ∈W2’s probability will hit 1 first.
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Lemma 3.6. ∀W2 ⊂W s.t. ρ(LW2×W2) ≥ 1, we have ∀ε > 0, [q(pt − ε)]k = 1.

We remark that if we can exactly estimate the eigenvector (which may be irrational), then the
above lemma has already determined that the k defined in Equation 8 is a pivot. To avoid the
eigenvalue computation, we find a quasi-eigenvector u in the following manner.

u =


uW1

= (I − LW1×W1
)−1LW1×{w};

uw = 1;

uZ∪O∪W\W2
= 0Z∪O∪W\W2

.

(9)

The meaning of the above vector is as follows. If we raise agent w’s probability by δ, those probabil-
ities of agents in W1 increase proportionally to LW1×{w}δ. Assuming that we ignore the probability
changes outside W2 (which will even increase the probabilities in W2), the probability of agents in
W1 will eventually converge to (I+LW1×W1 +L2

W1×W1
+ ...)LW1×{w}δ = (I−LW1×W1)−1LW1×{w}δ.

We will see that the real probability vector increases at least “as much as if we increase in the
direction of u”. In other words, we pick a pivot in the same way as Equation 8. The following is
the critical lemma to support our result.

Lemma 3.7. Given the definition of u in Equation 9 and k using Equation 8, we have ∀ε >
0, [q(pt − ε)]k = 1.

3.4.2 Recursion on the subproblem.

Let W ′ = W \ {k}, O′ = O ∪ {k}, and we consider a subproblem with n′ = n − |O′| < n agents,
where k is the pivot identified in the previous section. This subproblem is a projection of the
original one, assuming that the agents in O′ always tend to buy the product.

∀i ∈ Z ∪W ′, [a′i, b
′
i] = [ai +

∑
j∈O′ Tj,i, bi +

∑
j∈O′ Tj,i]. (10)

By recursively solving this new instance, we can solve the pessimistic equilibrium of the subproblem
for any given price p. This recursive procedure will eventually terminate because every invocation
reduces the number of agents by at least 1. The following lemma tells us that for any p < pt, the
pessimistic equilibrium of the original problem and the subproblem are one-to-one.

Lemma 3.8. Let q′(p) be the pessimistic equilibrium function in the subproblem. We have:

∀p < pt,q(p) = 〈q′(p),1O′〉.

At this moment we have solved the pessimistic equilibrium q(p) for p < pt, and thus solved the
original problem. We summarize our unrestricted line sweep method in Algorithm 2 in Appendix B
for completeness. Again q(p) is a piecewise linear function of p with no more than 2n+ 1 pieces.

Theorem 3.9. For matrix T satisfying Ti,i = 0 and Ti,j ≥ 0, in polynomial time Algorithm 2
is able to calculate the pessimistic equilibrium q(p) (resp. q(p)) at any price p, along with the
optimal p that ensures the maximal revenue under the pessimistic equilibrium (resp. the optimistic
equilibrium).
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4 Extensions

We discuss some possible extensions of our model in this section with both positive and negative
influences. When the influence values can be negative, it is actually PPAD-hard to compute an
approximate equilibrium. We define a probability vector q to be an ε-approximate equilibrium for
price p if:

qi ∈ (q′i − ε, q′i + ε),

where q′i = med{0, 1, bi−p+
∑

j∈[n] Tj,iqj

bi−ai }. We have the following theorem, whose proof is deferred to
Appendix C.1.

Theorem 4.1. It is PPAD-hard to compute an n−c-approximate equilibrium of our pricing system
for any c > 1 when influences can be negative.

In discriminative pricing setting, we study the revenue maximization problem in two natural
models. We assume the agents are partitioned into k groups. The seller can offer different prices
to different groups. The first model we consider is the fixed partition model, i.e., the partition is
predefined. In the second model, we allow the seller to partition the agents into k groups and offer
prices to the groups respectively. We have the following two theorems, whose proofs are deferred
to Appendix C.2.

Theorem 4.2. There is an FPTAS for the discriminative pricing problem in the fixed partition
case with constant k.

Theorem 4.3. It is NP-hard to compute the optimal pessimistic discriminative pricing equilibrium
in the choosing partition case.
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Appendix

A Missing Proofs in Section 2

Before proving Lemma 2.3, let us recall the Bayesian Nash Equilibrium (BNE) from the economics
literature (see e.g. Chapter 8 of [MCWG95]). Formally, in a Bayesian game, each agent has a private
type vi ∈ Ωi, where Ωi is the set of all possible types of agent i. Let Si be the action space for agent
i. Slightly abusing the notation, we define the (pure) strategy of agent i as a function di : Ωi → Si.
The utility of agent i when the type configuration v is known is Ui(〈di(vi),d−i(v−i)〉, vi), where
d−i(v−i) is the joint actions of all agents other than i. Define the expected utility of agent i as:

Ũi(d1(·), . . . , dn(·)) := Ev∼Ω1×···×Ωn
[Ui(〈di(vi),d−i(v−i)〉, vi)],

where the expectation is taking over all type configurations of the agents.

Definition A.1 (Bayesian Nash Equilibrium (BNE)). A profile of strategies {d1(·), . . . , dn(·)} is
a (pure) Bayesian Nash Equilibrium, if and only if, for all i, all vi ∈ Ωi and any other strategy
d′i(·) of agent i, such that,

Ũi(d1(·), . . . , di(·), . . . , dn(·)) ≥ Ũi(d1(·), . . . , d′i(·), . . . , dn(·))

In our setting, Ωi is the set of private values of agent i and di(·) maps a particular value vi
to {0, 1}. The utility of agent i is given in Equation 1. Notice that mixed strategies are almost
irrelevant here, because while fixing other agent’s private valuations, agent i’s strategy is a simple
choice between to buy or not to buy. Unless the utility function ui(S, p) = 0, there is always a
unique better choice for her.

For ease of presentation, we redefine the equilibrium based on the buying probability of the
agents and show that they are equivalent.

Lemma 2.3 (restated). Given equilibrium q (recall Def. 2.2), the strategy profile such agent i
“buys the product if and only if her internal valuation vi ≥ p −

∑
j 6=i Tj,iqj” is a Bayesian Nash

equilibrium; on the contrary, if a strategy profile is a Bayesian Nash equilibrium, then the probability
that agent i buys the product satisfies Equation 2.

Proof. Let strategy profile d(·) = (d1(·), d2(·), ..., dn(·)) be a Bayesian Nash equilibrium, and qi =
Prvi [di(vi) = 1] be the probability that agent i buys the product under this profile. In our setting,
the utility of agent i is defined by Equation 1. Now we calculate the expected utility of agent i:

ũi(di(·),d−i(·)) = Evi [di(vi) · (vi − p+ Ev−i
[
∑
j 6=i

Tj,idj(vj)])]

= Evi [di(vi) · (vi − p+
∑
j 6=i

Tj,iqj)]
(11)

To satisfy the condition of Bayesian Nash equilibrium, we must have that ∀d′i(·), ũi(di(·),d−i(·)) ≥
ũi(d

′
i(·),d−i(·)). This means, di(vi) must be 1 whenever vi − p +

∑
j 6=i Tj,iqj is positive, and 0

whenever it is negative 2. Therefore, qi = Pr[di(vi) = 1] = Pr[vi − p +
∑
j 6=i Tj,iqj > 0], satisfying

Def. 2.2.

2Strictly speaking, we should say “almost everywhere” but this does not affect our analysis.
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On the contrary, the strategy that agent i “buys whenever vi ≥ p−
∑
j 6=i Tj,iqj” can be denoted

as di(vi) = I[vi − p+
∑
j 6=i Tj,iqj > 0] where I is the indicator function. This obviously maximizes

Equation 11, and is a Bayesian Nash equilibrium.

Lemma 2.7 (restated). Equilibria satisfy the following properties:

a) For any equilibrium q at price p, we have q(p) ≤ q ≤ q(p).

b) Given price p, for any probability vector q ≤ q(p), we have f
(∞)
p (0) = q(p) = f

(∞)
p (q).

c) Given price p1 ≤ p2, we have q(p1) ≥ q(p2) and q(p1) ≥ q(p2).

d) q(p) = limε→0+ q(p+ ε) and q(p) = limε→0− q(p+ ε).

Proof.

a) By the definition of equilibrium, q = fp(q) = f
(∞)
p (q). Next according to 0 ≤ q ≤ 1 and the

monotonicity of fp, we derive that:

fp(0) ≤ fp(q) ≤ fp(1)⇒ ...⇒ f (∞)
p (0) ≤ f (∞)

p (q) ≤ f (∞)
p (1).

b) By symmetry we only need to prove the first half. We already know that fp(q(p)) = q(p),
then recall the monotonicity of fp

0 ≤ q ≤ q(p)⇒ fp(0) ≤ fp(q) ≤ fp(q(p))⇒ ...

⇒ f (∞)
p (0) ≤ f (∞)

p (q) ≤ f (∞)
p (q(p))

⇒ q(p) ≤ f (∞)
p (q) ≤ q(p).

Notice that the last “⇒” is due to f
(∞)
p (0) = q(p) = fp(q(p)) = ... = f

(∞)
p (q(p)), while the

convergence of the limit f
(∞)
p (q) = limm→∞ f

(∞)
p (q) is ensured by the sandwich theorem.

c) This time we use the combined monotonicity of the function f (Fact 2.6)

p1 ≤ p2 ∧ 0 ≥ 0⇒ fp1(0) ≥ fp2(0)

p1 ≤ p2 ∧ fp1(0) ≥ fp2(0)⇒ f (2)
p1 ≥ f

(2)
p2 (0)

...

⇒ f (∞)
p1 (0) ≥ f (∞)

p2 (0)

⇒ q(p1) ≥ q(p2)

For similar reason we also have q(p1) ≥ q(p2).

d) We only prove the first half while the property of q(p) can be obtained in similar way. We

first claim that for any fixed m, f
(m)
p (0) = limε→0+ f

(m)
p+ε(0). Since fp(q) is a continuous

multi-variable function with respect to (p,q), the composition f
(m)
p (q) is also continuous.

This directly implies our claim.
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Now assume Property (d) is not true: there exists δ > 0 and ε0 such that ∀0 < ε < ε0,
[q(p) − q(p + ε)]i > δ for some i. By definition of the pessimistic equilibrium, there exists

m0 such that [q(p) − f (m0)
p (0)]i < δ/2. On the other hand by our claim just proved, we can

choose ε small enough such that [f
(m0)
p (0) − f (m0)

p+ε (0)]i < δ/2. Combining the two we have

δ > [q(p)−f (m0)
p+ε (0)]i ≥ [q(p)−q(p+ε)]i, where the second inequality is due to non-decreasing

sequence {f (m)
p+ε(0)}m≥1 that converge to q(p + ε). This contradiction completes the proof.

We remark here that the left continuity does not hold, see the beginning of Section 3.4.

B Missing Proofs in Section 3

Before proving Lemma 3.3, we first show Equation 7 is well defined.

Lemma B.1. ` ∈ Rn+ and εmin > 0.

Proof. When I − L is strictly diagonal dominant, the largest eigenvalue of LW×W is smaller than
1. By the knowledge from complex analysis, the following limit exists

(I − LW×W )−1 = I + LW×W + L2
W×W + · · ·

and it is a non-negative matrix since L is non-negative.

Now, y is strictly positive and therefore `W = (I−LW×W )−1yW ∈ R|W |+ is also positive. Besides,

recall the definition in Equation 6 we have `Z = yZ+LZ×W `W ∈ R|Z|+ , `O = yO+LO×W `W ∈ R|W |+ ,
and therefore ` ∈ Rn+. Finally, by our Step 1, we have [x + Lqt]i < 0 for i ∈ Z, and [x + Lqt]j < 1
for j ∈W . Therefore, εmin > 0 is properly defined.

Lemma 3.3 (restated). ∀0 < ε ≤ εmin, q(pt − ε) = 〈0Z , rW (ε),1O〉.

Proof. We first show that q = 〈0Z , rW (ε),1O〉 is an equilibrium for ε ∈ (0, εmin]. By our definition
of εmin, when 0 < ε ≤ εmin we must have

[gpt−ε(q)]W = rW (ε) ∈ [0, 1]|W |

[gpt−ε(q)]Z = rZ(ε) ≤ 0Z

[gpt−ε(q)]W = rO(ε) ≥ rO(0) ≥ 1O

Since fpt−ε = med{0, 1, gpt−ε} (Def. 2.4), it must be the case that fpt−ε(q) = q, i.e., q is an
equilibrium. Next we lower bound the pessimistic equilibrium by q(pt − ε) ≥ q. This will be
sufficient to complete the proof following from Lemma 2.7a.

Denote p = pt−ε, notice that q(p) = f
(∞)
p (0) = f

(∞)
p (qt), where the second equality is because:

Lemma 2.7c⇒ qt = q(pt) ≤ q(p)

Lemma 2.7b
=⇒ q(p) = f (∞)

p (0) = f (∞)
p (qt)

For the simplicity of notation, we define x′W := xW +LW×O1O as a constant vector, and according
to the definition of an equilibrium:

qtW = x′W + LW×WqtW .
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After repeated use of the monotonicity of transfer function f , we make the following analysis 3 :

fpt−ε(qt) ≥ 〈0Z , εyW + qt
W ,1O〉

f
(2)
pt−ε(qt) ≥ fpt−ε(〈0Z , εyW + qt

W ,1O〉)

≥ 〈0Z ,x
′
W + εyW + LW×W (εyW + qt

W ),1O〉
= 〈0Z , ε(I + LW×W )yW + qt

W ,1O〉
· · ·

f
(∞)
pt−ε(qt) ≥ 〈0Z , ε(

∞∑
i=0

(
LW×W )i

)
yW + qt

W ,1O〉

(12)

The last inequality in Equation 12 implies that

q(pt − ε) = f
(∞)
pt−ε(q

t) ≥ 〈0Z , ε(I − LW×W )−1yW + qtW ,1O〉
= 〈0Z , rW (ε),1O〉 = q

The following lemma in matrix analysis is important for our analysis.

Lemma B.2 ([HJ90]). Given a non-negative matrix M (i.e. ∀i, j,Mij ≥ 0), there exists a non-
negative (and non-zero) eigenvector x ≥ 0 satisfying Mx = λx, in which λ = ρ(M) is a real
number.

Lemma 3.5 (restated). Given non-negative matrix M , if I −M is reversible and (I −M)−1 is
also non-negative, then ρ(M) < 1; on the contrary, if I −M is degenerate or if (I −M)−1 contains
negative entry, ρ(M) ≥ 1.

Proof. For the first half, assume the contrary that ρ(M) ≥ 1. According to Lemma B.2, there exists
a non-negative x s.t. (I −M)x = (1 − ρ(M))x ≤ 0. As (I −M)−1 is non-negative, multiply a
non-positive vector (I−M)x to its right is also non-positive: (I−M)−1(I−M)x ≤ 0. But the last
inequality means that x ≤ 0 which contradicts the result in Lemma B.2 saying x is a non-negative
and non-zero eigenvector.

For the second half, if I −M is degenerate then (I −M)x = 0 has a non-zero solution, which
implies Mx = x and ρ(M) ≥ 1. Assume the contrary that ρ(M) < 1, then (I −M)−1 = I +M +
M2 + ... is non-negative as M is non-negative, resulting in a contradiction.

Lemma 3.6 (restated). For any W2 ⊂W s.t. ρ(LW2×W2) ≥ 1, we have ∀ε > 0, [q(pt−ε)]k = 1.

Proof. We will only prove the statement when W2 = W , as the analysis for W2 6= W is similar.

3within which we implicitly adopted the following property:

ε(I + LW×W + ...+ Lm−1
W×W )yW + qt

W ≤ εmin(I − LW×W )−1yW + qt
W ≤ 1W
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Algorithm 1 ConstrainedLineSweepMethod(n, T,a,b)

Input: n, T,a,b.
Output: The pessimistic equilibrium function q : p 7→ q(p).

1: Li,j ← Tj,i/(bi − ai);
2: p1 ← max1≤i≤n bi;
3: q(p)|[p1,∞) ← 0;
4: Z ← [n]; W ← ∅; O ← ∅; t← 1;
5: while q(pt) 6= 1 do
6: qt ← q(pt);
7: x← ((b1 − pt)/(b1 − a1), (b2 − pt)/(b2 − a2), ..., (bn − pt)/(bn − an));
8: y← (1/(b1 − a1), 1/(b2 − a2), ..., 1/(bn − an))T ;
9: for all i ∈ Z s.t. xi +

∑
j Li,jq

t
j = 0 do

10: Z ← Z \ {i}; W ←W ∪ {i};
11: end for
12: for all i ∈W s.t. xi +

∑
j Li,jq

t
j = 1 do

13: W ←W \ {i}; O ← O ∪ {i};
14: end for
15: `W ← (I − LW×W )−1yW ; {See Equation 6}
16: `Z ← yZ + LZ×W `W ; {See Equation 6}
17: εmin = min{mini∈Z{ 0−[x+Lqt]i

`i
},mini∈W { 1−[x+Lqt]i

`i
}}; {See Equation 7}

18: pt+1 ← pt − εmin;
19: q(p)|[pt+1,pt) ← 〈1Z , rW (pt − p),1O〉;
20: t← t+ 1;
21: end while
22: q(p)|(−∞,pt) ← 1;
23: return q;
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As LW×W is a non-negative matrix, based on Lemma B.2 there exists a non-zero eigenvector
uW ≥ 0W such that LW×WuW = λuW and λ = ρ(LW×W ) ≥ 1. uW can be extended to [n] by
defining uZ∪O = 0Z∪O. Let

k = arg min
k∈[n],uk 6=0

1− qtk
uk

Since u 6= 0, the above equation is well defined. As qti < 1 for any i ∈ W in the current

configuration, we also have
1−qtk
uk

> 0. The tie is broken arbitrarily.
Since y > 0 and u ≥ 0, for any ε > 0, there exists δ > 0 satisfying δu ≤ εy. Because δ can be

arbitrary small, let δ =
(

1−qtk
uk

)
/(1 + λ+ · · ·+ λm−1) in which m is sufficiently large to satisfy the

above constraint. For any probability vector q, we have [fpt−ε(q)]i = med{0, 1, [x + εy + Lq]i}.
Define function [h(q)]i = med{0, 1, [x + δu + Lq]i}. Clearly, fpt−ε(q) ≥ h(q).

Starting from qt ≥ qt, we continue to apply the left side by fpt−ε and the right side by h, we
derive the followings: 4

fpt−ε(qt) ≥ h(qt) ≥ 〈0Z ,x
′
W + δuW + LW×WqW ,1O〉

= 〈0Z , δuW + qt
W ,1O〉

f
(2)
pt−ε(qt) ≥ h(〈0Z , δuW + qt

W ,1O〉)

≥ 〈0Z , δ(I + LW×W )uW + qt
W ,1O〉

= 〈(0Z , δ(1 + λ)uW + qt
W ,1O〉

. . .

f
(m)
pt−ε(qt) ≥ 〈0Z , δ(1 + λ+ ...+ λm−1)uW + qt

W ,1O〉

= 〈0Z ,

(
1− qtk
uk

)
uW + qt

W ,1O〉

From our selection of k, we know that[
〈0Z ,

(1− qtk
uk

)
uW + qtW ,1O〉

]
k

= 1

i.e., ∀ε > 0, we have [q(pt − ε)]k ≥ [f
(m)
pt−ε(q

t)]k = 1. This completes the proof of the existence of
pivot k.

Lemma 3.7 (restated). Given the definition of u in Equation 9 and k using Equation 8, we
have ∀ε > 0, [q(pt − ε)]k = 1.

Proof. We only prove the case when Z = O = W \W2 = ∅, and will briefly describe how our proof
can be extended to the general case. We use q−w to denote q[n]\{w} = qW1 .

Let δ = mink∈[n],uk 6=0
1−qtk
uk

> 0. We know that if we increase from qt in the direction of u, we

can at most raise δu until agent k’s probability hits 1. For a fixed ε > 0, let q′ = q(pt − ε) be the
pessimistic equilibrium. To prove q′k = 1 we consider two cases:

4 Within which we implicitly adopted the following property: ∀m0 < m,

δ(1 + λ+ ...+ λm0−1)uW + qt
W ≤

(
1− qtk
uk

)
uW + qt

W ≤ 1W
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• q′w ≥ qtw + δ.

This means that in the real scenario, agent w indeed increases her probability by at least δ.
It can be verified that in this case, the rest of the agents in W1 = [n] \ {w} have to increase
by at least δu−w. In other words, q′−qt ≥ δu which already implies q′k ≥ 1 by our definition
of k and δ.

• q′w < qtw + δ.

In this case, the actual final probability of w is small. Let δ′ = q′w − qtw < δ. We start from
the inequality qt + 〈0−w, δ′〉 ≥ qt. Let z−w = LW1×{w}. By applying the transfer function
fpt−ε to both sides and using the monotonicity,

qt + 〈εy−w + δ′z−w, σ1〉 = fpt−ε(q
t + 〈0W1 , δ

′〉) ≥ fpt−ε(qt)

for some σ1 ≥ 0. Based on qtw + δ′ ≥ q′w = [f
(∞)
pt−ε(q

t)]w ≥ [fpt−ε(q
t)]w, we always have

qt + 〈εy−w + δ′z−w, δ
′〉 ≥ fpt−ε(qt). By applying the transfer function again we have

qt + 〈ε(I + LW1×W1
)y−w + δ′(I + LW1×W1

)z−w, σ2〉 ≥ f (2)
pt−ε(q

t).

We continue to replace σ2 by δ′ and apply the transfer function. Doing this iteratively while
assuming that ε is sufficiently small, we have:

qt + 〈ε(I − LW1×W1)−1y−w + δ′(I − LW1×W1)−1z−w, δ
′〉 ≥ f (∞)

pt−ε(q
t).

Recall the definition of u we can rewrite the above equation as: qt+δ′u+〈ε(I−LW1×W1
)−1y−w, 0〉 ≥

q′. Since δ′ < δ and qt < 1, we have qt + δ′u < 1. When ε is sufficiently small, we also have
that the left hand side in the above equation is smaller than 1, and this proves that q′ < 1
when ε is small, which contradicts Lemma 3.6 which says that the pivot always exists.

We describe how we prove the general case where Z,W \W2 and O are not necessarily empty.
Imagine a subproblem with only |W2| rational players, while for agent i ∈ [n] \W1, her probability
is fixed to qti , no matter how the price varies and other players behave. We can also define the
transfer function and pessimistic equilibrium in this subproblem. Then, using the same argument
as above, we can find one pivot k such that agent k’s probability hits 1 in the subproblem, when
p < pt. It can be verified that in the original problem, this agent k will also buy with probability
1, since when releasing the constraints on agents in [n] \W2, the entire probability vector may only
increase rather than decrease.
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Algorithm 2 LineSweepMethod(n, T,a,b)

Input: n, T,a,b.
Output: The pessimistic equilibrium function q : p 7→ q(p).

1: Li,j ← Tj,i/(bi − ai);
2: p1 ← max1≤i≤n bi;
3: q(p)|[p1,∞) ← 0;
4: Z ← [n]; W ← ∅; O ← ∅; t← 1;
5: while q(pt) 6= 1 do
6: qt ← q(pt);
7: x← ((b1 − pt)/(b1 − a1), (b2 − pt)/(b2 − a2), ..., (bn − pt)/(bn − an));
8: y← (1/(b1 − a1), 1/(b2 − a2), ..., 1/(bn − an))T ;
9: for all i ∈ Z s.t. xi +

∑
j Li,jq

t
j = 0 do

10: Z ← Z \ {i}; W ←W ∪ {i};
11: end for
12: for all i ∈W s.t. xi +

∑
j Li,jq

t
j = 1 do

13: W ←W \ {i}; O ← O ∪ {i};
14: end for
15: if ρ(LW×W ) < 1 then
16: `W ← (I − LW×W )−1yW ; and `Z ← yZ + LZ×W `W ; {See Equation 6}
17: εmin = min{mini∈Z{ 0−[x+Lqt]i

`i
},mini∈W { 1−[x+Lqt]i

`i
}}; {See Equation 7}

18: pt+1 ← pt − εmin;
19: q(p)|[pt+1,pt) ← 〈1Z , rW (pt − p),1O〉;
20: else {|W | ≥ 2}
21: Assume W = {w1, w2, ...w|W |};
22: for i← 2 to |W | do
23: W1 ← {w1, ...wi−1}; W2 ← {w1, ...wi};
24: if ρ(LW2×W2) ≥ 1 then
25: uW1 = (I − LW1×W1)−1LW1×{wi};

uwi
= 1; u[n]\W2

= 0[n]\W2
; {See Equation 9}

26: k ← argmink∈[n],uk 6=0{(1− [qt]k)/uk}; {See Equation 8}
27: O ← O ∪ {k}; Ō ← [n] \O;
28: ∀i ∈ Ō, [a′i, b

′
i] = [ai +

∑
j∈O Tj,i, bi +

∑
j∈O Tj,i]; {See Equation 10}

29: q′ ← LineSweepMethod(|Ō|, TŌ×Ō,a′,b′);
30: q(p)|(−∞,pt) ← 〈q′(p),1O〉;
31: return q;
32: end if
33: end for {never reach here}
34: end if
35: t← t+ 1;
36: end while
37: q(p)|(−∞,pt) ← 1;
38: return q;
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Lemma 3.8 (restated). Let q′(p) be the pessimistic equilibrium function in the subproblem.
We have:

∀p < pt,q(p) = 〈q′(p),1O′〉.

Proof. We prove the lemma in two steps. We will first show that 〈q′(p),1O′〉 is an equilibrium at
price p, and then lower bound the pessimistic equilibrium by 〈q′(p),1O′〉 ≤ q(p). Combined with
the property of equilibrium in Lemma 2.7a, it is enough to see that 〈q′(p),1O′〉 is the pessimistic
equilibrium of the original problem.

For convenience let O
′

= [n] \O′.

• Let q = 〈q′(p),1O′〉, and we are going to show fp(q) = q. Based on the definition of [a′i, b
′
i]

in the subproblem, we already have that [fp(q)]O′ = qO′ = q′(p). This is because ∀i ∈ O′,

[fp(q)]i = med

{
0, 1,

bi − p+
∑
j∈[n] Tj,iqj

bi − ai

}

= med

{
0, 1,

b′i − p+
∑
j∈O′ Tj,iqj

b′i − a′i

}
= qi.

Therefore we only need to show that [fp(q)]O′ = 1O′ . Assume the contradiction that
[fp(q)]O′ ≤ 1O′ and ∃i ∈ O′ s.t. [fp(q)]i < 1. We start from fp(q) ≤ q and arrive at

f
(m)
p (q) ≤ f

(m−1)
p (q) by using the monotonicity of f . The following limit exists because a

non-increasing and lower bounded sequence has a limit.

q∗ = lim
m→∞

f (m)
p (q) ≤ fp(q)

Because of the continuity of function f , q∗ is an equilibrium at price p. According to Lem-
ma 2.7

[q(p)]i ≤ q∗i ≤ [fp(q)]i < 1.

If i ∈ O = O′ \{k}, this contradict the fact that 1 = [q(pt)]i ≤ [q(p)]i; if i = k this contradicts
Lemma 3.7. Therefore it must be the case that fp(q) = q.

• We now lower bound the pessimistic equilibrium q(p). For similar reason as the first half of
the proof, we have [q(p)]O′ = 1O′ . Let f ′p be the transfer function of the subproblem. We
start from the inequality 〈0O′ ,1O′〉 ≤ q(p) and apply the monotone function fp to both sides:

fp(〈0O′ ,1O′〉) = 〈f ′p(0O′), ?〉 ≤ q(p)

We need not to know what ? is, and start with the new inequality 〈f ′p(0O′),1O′〉 ≤ q(p) and
derive that:

fp(〈f ′p(0O′),1O′〉) = 〈f ′(2)
p (0O′), ?〉 ≤ q(p)

By doing this again and again, we reach the inequality

〈f ′(∞)
p (0O′),1O′〉 ≤ q(p)

which immediately gives us 〈q′(p),1O′〉 ≤ q(p).

This completes the proof.
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C Missing Proofs in Section 4

C.1 Hardness results with negative influences

In this section, we show that when the influence values can be negative, it is PPAD-hard to compute
an approximate equilibrium. We define a probability vector q to be an ε-approximate equilibrium
for price p if:

qi ∈ (q′i − ε, q′i + ε),

where q′i = med{0, 1, bi−p+
∑

j∈[n] Tj,iqj

bi−ai }.
We prove the PPAD hardness by a reduction from the two player Nash equilibrium computation.

Our construction is inspired by [CT11]. Let matrices A,B ∈ Rn×n be the payoff matrices of the
two players respectively, i.e. (Ai)j (resp. (Bi)j) is the payoff for the first player (resp. the second
player) when the first player plays its i-th strategy and the second player plays its j-th strategy. It
is PPAD-hard to approximate the two player Nash Equilibrium with error 1/nα for any constant
α > 0 [CDT09]. We build an instance of our pricing problem as follows. (δ is a small value to be
determined later.)

• Price p = 1/2.

• User Xi with value interval [0, 1] for i ∈ [n]. The probability that Xi buys the product is xi.

• User Yi with value interval [0, 1] for i ∈ [n]. The probability that Yi buys the product is yi.

• User Ui,j , i, j ∈ [n] is used to enforce xi = 0, when Aiy
T + δ < Ajy

T . For any k ∈ [n], we
assign influence on edge (Yk, Ui,j) to be (Aj)k − (Ai)k. Define Ui,j ’s valuation interval to be
[1/2− δ, 1/2− δ + δ2].

• User Vi,j , i, j ∈ [n] is used to enforce yi = 0 when Bix
T +δ < Bjx

T . For any k ∈ [n], influence
on edge (Xk, Vi,j) is (Bj)k − (Bi)k. Define Vi,j ’s valuation to be [1/2− δ, 1/2− δ + δ2].

• For i, j ∈ [n], influence values on edges (Ui,j , Xi) and (Vi,j , Yi) are −1.

• All other pair-wise influence values are zero.

In our setting, if Ui,j buys the product, it will provide influence of −1 to Xi, which will imply
the probability that Xi will buy the product is 0.

Theorem 4.1 (restated). It is PPAD-hard to compute an n−c-approximate equilibrium of our
pricing system for any c > 1 when influences can be negative.

Proof. Let δ = n−c. Consider the instance we constructed above. Let x, y, u, v be the set of
vectors that form an δ-approximate equilibrium of our pricing instance. We will show that we
can construct an O(n1−c) approximate Nash equilibrium for the two player game. To simply the
notation, we define x± y = [x− y, x+ y]. In particular, we have

xi ∈ med{0, 1, 1/2−
∑

i
ui,j} ± δ

yi ∈ med{0, 1, 1/2−
∑

i
vi,j} ± δ

ui,j ∈ med{0, 1, 1− 1/δ + 1/δ2〈Aj −Ai,y〉} ± δ
vi,j ∈ med{0, 1, 1− 1/δ + 1/δ2〈Bj −Bi,y〉} ± δ
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For the purpose of controlling normalization, we first prove that ||x||∞ = ||y||∞ ∈ 1/2± δ. It is
clear that ||x||∞ ≤ 1/2+δ, since Xi receives no positive influence in our construction. Furthermore,
for any vector y, let t = arg maxi∈[n]{AiyT }. Then for each Ut,j , the sum of influence is (Aj −
At)y

T ≤ 0. As a result, Ut,j will never buy the product and give a negative influence to Xt, which
implies ||x||∞ ≥ xt ≥ 1/2− δ. The proof of ||y||∞ ∈ 1/2± δ is similar. We can define

[x′]i =

{
[x]i if [x]i > δ
0 otherwise

Similarly, we obtain y′. We then normalize them to x∗ = x′

||x′||1 and y∗ = y′

||y′||1 . It is sufficient to

prove that x∗ and y∗ form an 9nδ-approximate Nash for the two player game. In particular, we
shall show

〈Ai,y∗〉+ 6nδ < 〈Aj ,y∗〉 =⇒ x∗i = 0

〈Bi,x∗〉+ 6nδ < 〈Bj ,x∗〉 =⇒ y∗i = 0

When Aiy
∗+6nδ < Ajy

∗, clearly 〈Aj−Ai,y′〉 > 6nδ||y′||1 > 3nδ and 〈Aj−Ai,y〉 > 3nδ−2nδ ≥ nδ.
(The entries in A and B are within range [−1, 1].) Therefore, ui,j ≥ 1 − δ, which implies xi ≤ δ
and x∗i = 0 by our construction. The proof for the statement of y∗ is symmetric.

Theorem 4.1 implies that computing an exact equilibrium in our pricing system is PPAD-hard,
when the price is given and the influence could be negative.

C.2 Discriminative pricing model

In this section, we discuss the extension of our problem in the discriminative pricing model, in
which different agents may be offered with different prices to the same good, and there are at most
k different prices offered. We only consider non-negative influences in this section. Let G be a k-
partition of agent set [n] and gi denote the group which agent i belongs to. Let p = (p1, p2, . . . , pk)
be the price vector corresponding to the k groups in the partition. Def. 2.2, Def. 2.4, and Def. 2.5
for a single price p can be straightforwardly extended to the case of price vector p with partition
G, and we omit their re-definitions here. We define the revenue maximization problem under the
discriminative pricing model as follows.

Definition C.1. The revenue maximization problem is to compute an optimal price vector p =
(p1, p2, . . . , pk) w.r.t. the pessimistic equilibrium (resp. optimistic equilibrium):

arg max
p≥0

∑
i∈[n]

pgi · [q(p)]i (resp. arg max
p≥0

∑
i∈[n]

pgi · [q(p)]i ).

Apparently, the uniform pricing case is a special case of discriminative model when k = 1. In
this section, we discuss two different cases in this model: the fixed partition case and the choosing
partition case. As the name suggests, in the fixed partition case, the partition of the agents are
given. On the other hand, in the choosing partition case, the algorithm has the flexibility to choose
the partition.
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C.2.1 Fixed partition case with constant k.

In this case, we let the k-partition of G be fixed and known to our algorithm. This is natural in a
modern market such as setting prices based on different regions or different user memberships.

Our algorithm for the uniform pricing model can be extended to some restricted cases in the
fixed partition case. For instance, given a fixed price vector p = 〈p1, p2, . . . , pn〉, we consider (a) all
possible price vectors that are {p+x1 |x ∈ R}; or (b) all possible price vectors that are {ξp | ξ > 0}.
These two cases capture certain scenarios in which the prices in different partitions either follow
fixed ratios, e.g. by different tax ratio or income distribution, or have fixed differences, e.g. by
transportation costs. In both cases, we can reduce the problem to a uniform price one, which can
be solved by our proposed algorithm. We only present the algorithm for the first case and the proof
for the second case is similar.

Claim C.2. There is a refinement of Algorithm 2 for all possible price vectors that are {p+x1 |x ∈
R}.

Proof. In order to compute revenue with respect to price vector p, we refine our line sweep method.
Let pt = mini∈[k] pi be the minimum entry in p and ∆i be pgi − pt. We use q to denote the
equilibrium when agents i is offered price p+ ∆i and modify Algorithm 2 line 7 to

x←
(
b1 − pt −∆1

b1 − a1
,
b2 − pt −∆2

b2 − a2
, ...,

bn − pt −∆n

bn − an

)

If the space expanded by the price vectors is not one dimensional, enumerating all structures like
our proposed line sweep algorithm is generally impractical. (See an counter example in Appendix D.)

When there is no constrain on the possible prices, we design an FPTAS when k is a constant.
We first estimate the optimal revenue which we can hope to achieve. In particular, for any group
i ∈ [k], we set the prices for all other groups to be 0. By our algorithm in Section 3, we can
compute the maximum revenue from group i in this case as Ri. Clearly, the optimal revenue is at
most R =

∑
i∈[k]Rk. We then design a discretization scheme based on R.

Let ε ∈ (0, 1) be a constant. Define pmax = R and pmin = εR/(2kn). Our algorithm works as
follows:

1 Compute revenue ri when price vector is

pi =
(
0, (1 + ε)i1pmin, (1 + ε)i2pmin, . . . , (1 + ε)ikpmin

)
for all 0 ≤ i1, i2, . . . , ik = dlog1+ε 2kn/εe.

2 Return pi with the maximum calculated ri.

Theorem 4.2 (restated). There is an FPTAS for the discriminative pricing problem in the fixed
partition case with constant k.

Proof. The set of total prices for each group in the algorithm is O(log1+ε(n/ε)) = O( log(kn/ε)
ε ).

Enumerating all possible prices takes time O(logk(n/ε)/εk), which is polynomial when k is constant.
Assume popt be the optimal price vector with optimal revenue Ropt ≥ maxiRi ≥ R/k. Let

p′ be the price vector, which is obtained by rounding all prices popt down to the closest Steiner
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price. Now consider the error introduced by the rounding scheme. Notice that by monotonicity,
this rounding will only increase the buying probability of each user. For all prices that are rounded
to 0, the revenue from the users offered with those prices is at most εR/(2k) ≤ εRopt/2 with the
optimal price vector. All other prices are decreased by at most a factor of 1 + ε/2. The revenue
collected from the agents offered with those prices in p′ is at least 1+ε/2 of that with p. Therefore,
in total, we receive a revenue of at least (1− ε/2)Ropt/(1 + ε/2) ≥ (1− ε)Ropt.

C.2.2 Choosing partition case with constant k.

Now we consider the case that the partition G can be chosen by our algorithm in order to maximize
the seller’s revenue. More precisely we define our problem as follows. Given the distribution of
agents’ values and their influence network, the problem is to compute the optimal k-partition of G
together with an optimal price vector p to maximize the seller’s revenue. We prove that when the
revenue is measured based on the pessimistic equilibrium, this optimization problem is NP-hard
even in the fixed valuation case (ai = bi for each player i).

In particular, we consider the following special case of the problem: (i) k = 2, (ii) The valuation
of the agents is deterministic, and (iii) the price can only be 0 or 1. For the case k > 2, we can add
some dummy agents in our construction and force the optimal solution to get the optimal revenue
in our construction for k = 2. We summarize the main result in the following theorem.

Theorem 4.3 (restated). It is NP-hard to compute the optimal pessimistic discriminative pric-
ing equilibrium in the choosing partition case.

Proof. We use a reduction from the Vertex Cover problem. We show that using any polynomial
algorithm for the pessimistic discriminative pricing problem in choose partition case, any instance
of the Vertex Cover problem can be solved in polynomial time. In an instance of an Vertex Cover
problem, given a graph G = (V,E), we must specify whether a subset S ⊂ V exists such that
|S| ≤ K and ∀u, v such that (u, v) ∈ E, we have v ∈ S or u ∈ S.

Then we prove that, for each graph G(V,E), the exists a network G′(V ′, E′) and agents’ valu-
ation so that, if ropt is the optimal revenue in G′, vertex number in minimum vertex cover of G is
|V ′| − ropt. First we will show how to construct G′ from G. V ′ is formed from the union of three
parts, denoted by A, D and M . In the first set A, there is one vertex ai with initial value 0 for
each vertex vi in G. The set D is used to represent the edges in original graph G. There is a vertex
de for each edge in G. The initial values of all these vertices are 0. Let e = (vi, vj) be an edge in
G. There is one edge from ai, one from aj to de weighted 1. The edges is used to represent the
cover action, if ai or aj buys the product, the de vertex will also buy the product. In addition, we
also need construct |D| × |A| edges weighted 1

|D| in G′, which from each de to each ai. The edges

means only if we cover all the vertex in D, all the vertex in A will just reach the value 1. Finally,
we must use a considerable large set M(≥ |V |3) to force the optimal solution to set an price on 1.
This is because if no final price is 1, it is hard to guarantee all the vertex in D will buy the product,
which also represent all the edges in G be covered. Therefore, we put independent vertexes in M
and weight them with 1. It is obvious that we must set a price 1 and another 0 to get the best
revenue and activate the vertexes in A and D.

Now we will show the optimal revenue ropt in G′ is equal to |V ′| − |C|. Let C be minimum
vertex cover of G and F be the set of people who get a zero price in G′. In our configuration, a
final price of optimal solution must be 1, so the revenue is equal to |V ′ − F |. Firstly, we show that
ropt ≥ |V | − |C|. If given a minimum vertex cover C for G, we can define F according to C. It
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means the seller will give the free product to the vertex in A if it represent a vertex in minimum
cover C. By the definition of vertex covering, all the vertexes in D , which represents the all edges
in original graph G, will be activated and their value will all reach to 1. As a result, the value of all
vertexes in A will also reach to 1 and will buy the product. Conclusively, our revenue will reach to
|V ′| − |C|. At last, we will prove ropt ≤ |V ′| − |C|. Suppose ropt > |V ′| − |C|, there must be a free
set F to achieve the maximum revenue ropt. Consider the structure of F , if F ∩M is not empty, we
can eliminate these vertexes to get a better revenue. If F ∩D is not empty, each point d ∈ F ∩D
can be replaced by the vertex in A which have an edge to it. This replacement never decreases our
revenue because the new vertex have a 1-weight edge to the old vertex. So there must be a F ⊆ A,
which could make the revenue greater than |V ′| − |C|. By the construction, we can convert F to a
vertex cover in G. This is a contradiction to the definition of minimum vertex cover.

D Counter Example in Appendix C.2

Assume n is even. Let p1 be the price offered to agents {1, 3, . . . , n− 1} and p2 be the price offered
to {2, 4, . . . , n}. The influences are defined as Tj,i = 2dj/2−1e for i < j and j − i is odd and greater
than 0, and 0 otherwise. The valuation of agent i is 2di/2−1e. There are a total of 2Ω(n) structures
for the pessimistic equilibrium as p1 and p2 vary in [0,+∞).

Proof. We prove the following stronger statement by induction: for all prices p1 ∈ (0, 2n/2) and
p2 ∈ (0, 2n/2), there are at least 2n/2 structures.

Consider the base case of n = 2, with agent 1 and 2. Since there is no influence among them, the
number of structure configuration is certainly 4 > 2, with the price range p1 ∈ (0, 2), p2 ∈ (0, 2).
Suppose the statement is true for n = 2i. For the case of n = 2(i + 1), there are two additional
agents 2i+ 1 and 2i+ 2.

Consider the price range p1 ∈ (2i, 2i+1), p2 ∈ (0, 2i). Agent 2i+1 will not buy the product while
agent 2i+2 does in this case. Since the influence from agent 2i+2 to every agent with price p1 is 2i

except 2i+ 1, the “effective price” for all odd agents except 2i+ 1 is p1 − 2i ∈ (0, 2i). In such price
range, there are at least 2i structures by induction. Symmetrically, the same conclusion holds for
price range p1 ∈ (0, 2i), p2 ∈ (2i, 2i+1). Notice these two price ranges have difference configuration
for agents 2i+ 1 and 2i+ 2. Therefore, in total there are at least 2 · 2i = 2i+1 structures.
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